1、单选题 三位数的自然数N满足:除以6余3,除以5余3,除以4也余3,则符合条件的自然数N有几个?_____
A: 8
B: 9
C: 15
D: 16
参考答案: C
本题解释:正确答案是C考点余数与同余问题解析由题意可知满足同余情形,例如此题”三位自然数N除以6余3,除以5余3,除以4也余3”,可见余数恒为3,则取3,因此N的表达式为60n+3,其中60为6、5、4的最小公倍数,根据题目中的N为三位数,可得不等式100≤60n+3≤999,解得2≤n≤16,因此符合条件的自然数有15个,故正确答案为C选项。注:同余问题需要如下口诀:余同取余,和同加和,差同减差,最小公倍数做周期。口诀解释:余同取余,例如本题,余数恒为3,则取3;合同加和,例如”一个数除以7余1,除以6余2,除以5余3”,可见除数与余数的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如”一个数除以7余3,除以6余2,除以5余1”。可见除数和余数的差相同,取此差4,被除数的表达式为210-4,其中210为5、6、7的最小公倍数。秒杀技根据题目,符合要求的数出现的周期为6、5、4的最小公倍数60,也即每60个连续自然数中必然有一个符合要求,三位数共有900个,因此符合要求的三位数共有900÷60=15(个),故正确答案为C选项。标签最小公倍数同余问题
2、单选题 如图,街道XYZ在Y处拐弯,XY=1125米,YZ=855米,在街道一侧等距装路灯,要求X,Y,Z处各装一盏路灯,这条街道最少要安装多少盏路灯?_____
A: 9月18日
B: 10月14日
C: 11月14日
D: 12月18日
参考答案: C
本题解释:正确答案是C考点周期问题解析A、B、C、D四人的周期分别为6、12、18、30,因此周期的最小公倍数为180。从5月18日向后数180天,180天约为6个月,因此该时间必然落在11月,故正确答案为C。
3、单选题 某演唱会检票前若干分钟就有观众开始排队等候入场,而每分钟来的观众人数一样多。从开始检票到等候队伍消失,若同时开4个入场口需50分钟,若同时开6个入场口则需30分钟。问如果同时开7个入场口需几分钟?_____
A: 18分钟
B: 20分钟
C: 22分钟
D: 25分钟
参考答案: D
本题解释:正确答案是D考点牛吃草问题解析设原有观众A,每分钟到达观众为x,则可得A=(4-x)×50=(6-x)×30,解得x=1,A=150。那么同时开放7个入口时全部完成入场需要时间为150÷(7-1)=25分钟。所以正确答案为D。牛吃草模型:公式为N=(牛数-Y)×天数,其中N表示原有草量的存量,以牛数与天数的乘积来衡量;Y表示专门吃新增加草量所需要的牛数。标签公式应用
4、单选题 甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?_____
A: 780元
B: 890元
C: 1183元
D: 2083元
参考答案: A
本题解释:正确答案是A考点其他解析设捐款总数为60x元,则由“甲捐款数是另外三人捐款总数的一半”得到甲捐款20x元;由“乙捐款数是另外三人捐款总数的1/3”得到乙捐款15x元;由“丙捐款数是另外三人捐款总数的1/4”得到甲捐款12x元。由题意得方程:20x+15x+12x+169=60x,解得x=13。因此60x=780,故正确答案为A。秒杀技由“甲捐款数是另外三人捐款总数的一半”可知捐款总数必须能被3整除,只有A选项符合。故正确答案为A。
5、单选题 16支球队分两组,每组打单循环赛,共需打_____场比赛。
A: 16
B: 56
C: 64
D: 120
参考答案: B
本题解释:参考答案:B
题目详解:依题意:16支球队分两组,每组8支队;每个队都要跟其余7个球队赛一场:因此,每组需要打8×7÷2=28场比赛,两组一共是28×2=56场比赛。所以,选B。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛