1、单选题 152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)_____
A: 1
B: 7
C: 12
D: 24
参考答案: A
本题解释:A【解析】 设箱子个数为m,因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。如果m=11,那么球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。如果m≤9,那么球的总数≤10×9+(10+9+8+…+2)=90+54=144<152,所以m=10在m=10时,10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题正确答案为A。
2、单选题 如下图所示,AB两点是圆形体育场直径的两端,两人从AB点同时出发,沿环形跑道相向匀速而行,他们在距A点弧形距离80米处的C点第一次相遇,接着又在距B点弧形距离60米处的D点第二次相遇,问这个圆形体育场的周长是多少米?_____
A: 240
B: 300
C: 360
D: 420
参考答案: C
本题解释:正确答案是C考点行程问题解析解析1:根据题意可知两人第一个运动过程的路程和为半个圆周,第二个运动过程的路程和为整个圆周,因此每个人在两个过程中的路程比为1:2,设劣弧BC长为x,根据题意可得,80:(x+60)=1:2,解得x=100,因此圆周长为:2×(80+100)=360,故正确答案为C。解析2:此题为两次相遇问题,运用公式可得圆周长的一半为:80×3-60=180米,因此周长为360米,故正确答案为C。备注:两次相遇问题,两边型的两端点之间的距离公式:S=3A-B,其中S表示两端点之间的距离,A、B表示先后两次相遇点分别关于两个端点的距离。
3、单选题 某学校1999名学生去游故宫、景山和北海三地,规定每人至少去一处,至多去两地游览,那么至少有多少人游览的地方相同?_____
A: 35
B: 186
C: 247
D: 334
参考答案: D
本题解释:参考答案
题目详解:根据题意,可知:学生游玩一处的情况有3种,游玩2处的情况也有3种。学生游玩共有:3+3=6种情况,即共有6个抽屉。因为1999÷6=333…1,故至少有333+1=334人游览的地方相同考查点:数量关系>数学运算>抽屉原理问题>抽屉原理2
4、单选题 已知
A: 2
B:
C:
D: 2008
参考答案: B
本题解释:参考答案:B
题目详解:根据题干可得:
5、单选题 海岛上信号站的值班员总用红、黄、白三色各三面旗向附近海域出示旗语,在旗杆上纵排挂,可以是一面、二面、三面。那么这样的旗语有多少种?_____
A: 21
B: 27
C: 33
D: 39
参考答案: D
本题解释:参考答案
题目详解:如果是一面旗:有3种旗语;如果是二面旗:有