1、单选题 某人登山,上山时每走30分钟,休息10分钟;下山时每走30分钟,休息5分钟;下山的速度是上山速度的1.5倍。如果下山用了2小时15分,那么上山用的时间是_____。
A: 3小时40分
B: 3小时50分
C: 4小时
D: 4小时10分
参考答案: B
本题解释:正确答案是B考点行程问题解析设上山的速度为1,则下山的速度为1.5。下山用了2小时15分,即135分钟。下山时每走30分钟,休息5分钟。即下山时走了4个30分钟,休息了3个5分钟。也就是下山共走了2个小时。由此可知,下山的路程为:1.5×2=3。上山的速度是1,则上山需要走3小时,即6个30分钟,期间还需要休息5个10分钟。那么上山用的时间是:3小时50分钟。故正确答案为B。
2、单选题 某礼堂的观众座椅共96张,分东、南、西三个区域摆放。现从东区搬出与南区同样多的座椅放倒南区,再从南区搬出与西区同样多的座椅放到西区,最后从西区搬出与东区剩下的座椅数量相同的座椅放到东区,这时三个区域的座椅数量相同。则最初南区的座椅有_____张。
A: 24
B: 28
C: 32
D: 36
参考答案: B
本题解释:正确答案是B考点统筹规划问题解析第一次搬:东-南,2南,西;第二次搬:东-南,2南-西,2西;第三次搬:2东-2南,2南-西,2西-东+南。2东-2南=2南-西=2西-东+南,解得4南=7西,则南区座椅数肯定为7的倍数,只有B符合条件。故正确答案为B。标签数字特性
3、单选题 商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 40级
B: 50级
C: 60级
D: 70级
参考答案: C
本题解释:正确答案是C考点行程问题解析解析1:设女孩的速度为x,男孩为2x,扶梯的速度为y,根据题意可知男孩和女孩所用的时间相同,有x+y=2x-y,得x:y=2,即女孩的速度为扶梯的2倍,因此当女孩走了40级时扶梯走了20级,扶梯静止时有60级。因此正确答案为C。解析2:因为男孩单位时间内走的扶梯级数是女孩的2倍,所以男孩走80级的时间和女孩走40级的时间相等,由此可知他们两个乘电梯的时间相同,则电梯运行距离也相等,也即有如下两式:对于男孩:电梯长度=80-电梯运行距离;对于女孩:电梯长度=40+电梯运行距离。由此可知电梯长度为60,故正确答案为C。
4、单选题 整数64具有可被它的个位数字所整除的性质。试问在10和50之间有_____个整数具有这种性质。_____
A: 15
B: 16
C: 17
D: 18
参考答案: C
本题解释:正确答案是C考点倍数约数问题解析个位是1、2、5的数字都可以被1、2、5整除,有4×3=12个;个位是3的数字十位必须是3的倍数才能被3整除,只有33这1个数字;个位是4的数字十位必须是偶数才能被4整除,有2个;个位是6的数字十位也必须是3的倍数,有1个;个位是7的数字十位必须能够被7整除,有0个;个位是8的数字十位必须是4的倍数,有1个。个位是9的十位必须是9的倍数,有0个。因此总共有12+1+2+1+0+1+0=17个。故正确答案为C。
5、单选题 自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100<P<1000,则这样的P有几个?_____
A: 不存在
B: 1个
C: 2个
D: 3个
参考答案: C
本题解释:正确答案是C解析由"
除以10的余数为9,P除以9的余数为8,P除以8的余数为7",满足差同减差,对应口诀可知其符合表达式为360n-1,由于100<P<1000,则100<360n-1<1000,所以n能取1、2,则满足条件的P有两个,即359和719,故正确答案为C。注释:同余问题需要掌握如下口诀:余同取余,和同加和,差同加差,最小公倍数做周期。口诀解释:余同取余,例如"一个数除以7余1,除以6余1,除以5余1",可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如"一个数除以7余1,除以6余2,除以5余3",可见除数与余的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如"一个数除以7余3,除以6余2,除以5余1",可见除数与余的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。余数与同余问题标签同余问题