1、单选题 一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?_____
A: 16天
B: 20天
C: 22天
D: 24天
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
2、单选题 把一个正四面体的每个表面都分成9个相同的等边三角形,用任意颜色给这些小三角形上色,要求有公共边的小三角形颜色不同,问最多有多少个小三角形颜色相同?_____
A: 15
B: 12
C: 16
D: 18
参考答案: A
本题解释:正确答案是A考点几何问题解析先看一个面上的情况,要是颜色相同的三角形最多,最多有6个(如下图左侧图所示),此时其他面上能与之颜色相同的三角形最多只能有3个(如下图右侧图所示)。因此颜色相同的三角形最多有6+3×3=15个,正确答案为A。
3、单选题 1992是24个连续偶数的和,问这24个连续偶数中最大的一个是几?_____
A: 84
B: 106
C: 108
D: 130
参考答案: B
本题解释:正确答案是B考点数列问题解析解析1:24个连续的偶数是公差为2的等差数列。设最大的偶数为x,则最小的偶数是x-(24-1)×2,由题意得(x+x-23×2)×24÷2=1992,解得x=106,故正确答案为B。解析2:24个连续偶数构成公差为2的等差数列,因此其中位数为1992÷24=83,故最大的数为83+1+(24-13)×2=106,正确答案为B。
4、单选题 一本100多页的书,被人撕掉了4张,剩下的页码总和为8037,则该书最多有多少页?_____
A: 134
B: 136
C: 138
D: 140
参考答案: A
本题解释:正确答案是A考点数列问题解析撕掉一张纸,其正反两面的两个页码之和为奇数,则撕掉4张,页码总数必为偶数,剩余页码和为8037,所以原书的页码总和必然为奇数,由此排除BD(BD选项能被4整除,而连续4页的页码和必然为偶数)。代入C,可知整书的页码总和为(1+138)÷2×13 8=9591,于是撕掉的页码和为9591-8037=1554,那么撕掉的8页的页码平均值为194.25,显然与最多138页矛盾。故正确答案为A。
5、单选题 有37名红军战士渡河,现仅有一只小船,每次只能载5人,需要几次才能渡完?_____
A: 7次
B: 8次
C: 9次
D: 10次
参考答案: C
本题解释:正确答案是C考点计数模型问题解析