1、单选题 100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?_____
A: 22
B: 21
C: 24
D: 23
参考答案: A
本题解释:正确答案是A考点多位数问题解析要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。
2、单选题 一个快钟每小时比标准时间快3分钟,一个慢钟每小时比标准时间慢2分钟。如果将两个钟同时调到标准时间,结果在24小时内,快钟显示11点整时,慢钟显示9点半。则此时的标准时间是_____。
A: 10点35分
B: 10点10分
C: 10点15分
D: 10点06分
参考答案: D
本题解释:正确答案是D考点钟表问题解析应用比例,两个钟转动速度之差的比,即等于两钟钟面运行时长的差额之比。快钟与标准时间的之差、慢钟与标准时间的之差两者比为3:2,最终时间快钟、慢钟相差1.5小时,因此快钟与标准时间之差为1.5×3/5=0.9小时,则标准时间为11(时)-60×0.9(分)=10(时)06(分)。故正确答案为D。标签比例转化
3、单选题 有一种长方形小纸板,长为29毫米,宽为11毫米。现在用同样大小的这种小纸板拼合成一个正方形,问最少要多少块这样的小纸板_____
A: 197块
B: 192块
C: 319块
D: 299块
参考答案: C
本题解释:正确答案是C考点倍数约数问题解析本题可转化为求29与11的最小公倍数,即为29×11=319,则组成正方形的边长为319,从而可得组成正方形的小纸板数为319×319÷(29×11)=319(块)。故正确答案为C。
4、单选题 甲、乙两地相距210公里,a、b两辆汽车分别从甲、乙两地同时相向出发并连续往返于两地,从甲地出发的a汽车的速度为90公里/小时,从乙地出发的b汽车的速度为120公里/小时。问a汽车第二次从甲地出发后与b汽车相遇时,b汽车共行驶了多少公里?_____
A: 560公里
B: 600公里
C: 620公里
D: 630公里
参考答案: B
本题解释:正确答案是B考点行程问题解析a车第二次从甲出发前,经过一个往返的路程,即420公里,所用时间为420÷90=14/3小时;与此同时,b车经过路程为120×14/3=560公里,即一个往返路程加上140公里,此时ab两车位置如图所示。
5、单选题 施工队要在一东西长600米的礼堂顶部沿东西方向安装一排吊灯,根据施工要求,必须在距西墙375米处安装一盏,并且各吊灯在东西墙之间均匀排列(墙角不能装灯)。该施工队至少需要安装多少盏吊灯?_____
A: 6
B: 7
C: 8
D: 9
参考答案: B
本题解释:正确答案是B考点计数模型问题解析本题考查植树问题。根据题意,可将顶部分为两段,一段为375,一段为225,因为吊灯要均匀排列,且求最小值,所以要求375和225的最大公约数,为75,即最大间隔为75;由于两端不植树,则可得600÷75+1-2=7(盏)。故正确答案为B。