1、单选题 某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?_____
A: 8
B: 10
C: 12
D: 15
参考答案: D
本题解释:正确答案是D考点和差倍比问题解析乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。秒杀技由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
2、单选题 某年级150名同学准备选一名同学在教师节庆祝会上给老师献花。选举的方法是:让150名同学排成一排。由第一名开始报数,报奇数的同学落选退出队列,报偶数的同学站在原位不动,然后再从头报数,如此继续下去,最后剩下的一名当选。小胖非常想去,他在第一次排队时应该站在队列的什么位置才能被选中?_____
A: 64
B: 88
C: 108
D: 128
参考答案: D
本题解释:参考答案
题目详解:第一次报数,“从一开始报数,报奇数的同学退出队列”:故第一次报数,2的倍数原位不动;第二次报数:2的平方的倍数原位不动;第三次报数:2的立方的倍数原位不动;以此类推,到第7次:只剩下2的7次方的倍数原地不动,其余都退出,即排在
3、单选题 某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有_____人。
A: 57
B: 73
C: 130
D: 69
参考答案: A
本题解释:【解析】68+62+12-85=57人。
4、单选题 10个人围一圈,需要从中选出2个人,这两个人恰好不相邻,问有多少种选法?_____
A: 9
B: 10
C: 45
D: 35
参考答案: D
本题解释:参考答案
题目详解:从10个人中选出2个人:有
5、单选题 有一项工程含A、B、C、D、E、F六道工序,每道工序分别需要2天、3天、2天、5天、4天、1天时间完成,其中,(1)工序A、B第一天就可以同时动工;(2)工序C必须在工序A、B都完成后才可以动工;(3)工序D必须在工序C完成后才可以动工;(4)工序E必须在工序C完成后才可以动工;(5)工序F必须在工序D、E都完成后才可以动工。那么,完成这项工程至少需要多少天?_____
A: 10
B: 11
C: 12
D: 13
参考答案: B
本题解释:参考答案:B
题目详解:A、B第一天同时动工,A、B都完成需3天。C第四天动工,完成需2天。D、E第六天同时动工,D、E都完成需要5天。F第十一天动工,完成需1天,故完成工程至少需要