1、单选题 (2009-北京社会)甲、乙、丙三个滑冰运动员在一起练习滑冰,已知甲滑一圈的时间,乙、丙分别可以滑一又四分之一圈和一又六分之一圈,若甲、乙、丙同时从起点出发,则甲滑多少圈后三人再次在起点相遇?_____
A: 8
B: 10
C: 12
D: 14
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,“三人再次在起点相遇”,则三人滑的圈数必须都为整数;相同时间内,甲、乙、丙滑的圈数之比为:
2、单选题 有一种长方形小纸板,长为19毫米,宽为11毫米。现在用同样大小的这种小纸板拼合成一个正方形,问最少要几块这样的小纸板拼合成一个正方形,问最少要几块这样的小纸板?_____
A: 157块
B: 172块
C: 209块
D: 以上都不对
参考答案: C
本题解释:参考答案:C
题目详解:本题可转化为:求19与11的最小公倍数,即为:19×11=209;则组成正方形的边长为209,从而可得组成正方形的小纸板数为:
3、单选题 某单位的员工不足50人,在参加全市组织的业务知识考试中全单位有1/7的人得90~100分,有1/2的人得80~89分,有1/3的人得60~79分,请问这个单位得60分(不包含60分)以下考试成绩的有多少人?_____
A: 1
B: 2
C: 3
D: 4
参考答案: A
本题解释:参考答案:A
题目详解:根据题意,该单位的人数必能被7,2,3整除,且不足50人;因此该单位的人数为:42人;得60分以下的人数:
4、单选题 如图所示,街道ABC在B处拐弯,在街道一侧等距装路灯,要求A、B、C处各装一盏路灯,这条街道最少装多少盏路灯?_____
A: 18
B: 19
C: 20
D: 21
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,灯距应取715和520的最大公约数,即65米;则最少装路灯的数量为:(715+520)÷65+1=20盏。所以,选C考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
5、单选题 用正方形纸板铺满24×36cm的长方形,最少需要多少块正方形纸板?_____
A: 6
B: 12
C: 24
D: 54
参考答案: A
本题解释:参考答案:A
题目详解:本题可转化为求:24、36的最大公约数;24、36的最大公约数为12,故用边长为12cm的正方形纸板来铺,需要的纸板最少;需要正方形纸板为:(24×36)÷(12×12)=6块。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数