1、单选题 有一个三位数能被7整除,这个数除以2余1,除以3余2,除以5余4,除以6余5。这个数最小是多少?_____
A: 105
B: 119
C: 137
D: 359
参考答案: B
本题解释:参考答案:B本题得分:
题目详解:根据题意,设此数为A,则:它减1是2的倍数,减2是3的倍数,减4是5的倍数,减5是6的倍数,说明这个数除以2、3、5、6的余数都是1;则A+1为2、3、5、6的公倍数,且A为三位数,A+1最小为:
2、单选题 一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原来木箱内共有乒乓球多少个?_____
A: 246个
B: 258个
C: 264个
D: 272个
参考答案: C
本题解释:参考答案:C本题得分:
题目详解:“小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个”,即:第一次取出8N个还剩8个,那么总数肯定能被8整除;“每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个”,即:第二次取出10M个还剩24个,那么尾数只能是4;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质
3、单选题 在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小,这个数是_____
A: 865010
B: 865020
C: 865000
D: 865230
参考答案: B
本题解释:参考答案:B本题得分:
题目详解:能被5整除的数:末尾数字是0或5,四个选项都符合;能被4整除的数:末尾两位数可被4整除,排除A、D项;能被3整除的数:各位数字之和可被3整除,排除C;所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除特征
4、单选题 一个三位自然数正好等于它各位数字之和的18倍,则这个三位自然数是_____。
A: 999
B: 476
C: 387
D: 162
参考答案: D
本题解释:参考答案:D本题得分:
题目详解:根据题意,这个三位数是18的倍数,则它一定能被9和2整除:被9整除的数:各位数字之和能被9整除,排除B;能被2整除的数:末位数为0、2、4、6、8,排除A、C;所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除特征
5、单选题 在前100个自然数中,能被3除尽的数相加,所得到的和是多少?_____
A: 1250
B: 1683
C: 1275
D: 1400
参考答案: B
本题解释:参考答案:B本题得分:
题目详解:根据题意,在前100中,能被3除尽的数,即个位数字之和为3的倍数;“在前100个自然数中,能被3整除的数”有3、6、9、12、15、18……故可以转化为首项为3,末项为99,公差为3,共有33项的等差数列;在前100个自然数中,能被3除尽的数的和——等差数列求和: