1、单选题 有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率相同且不变,那么修完这段公路实际用_____。
A: 19天
B: 18天
C: 17天
D: 16天
参考答案: A
本题解释:正确答案是A考点工程问题解析解析1:设总工程为300,则每人每天工作量为300÷15÷20=1。第一阶段3天20人共完成工作量为3×20=60,第二阶段工作量为300-60=240,剩余15人每天完成工作量为15,还需240÷15=16天,则总共需3+16=19天。解析2:去其他工地的5人12天共完成工作量为5×12=60,需要剩余的15人工作60÷15=4天,则修完这条公路总共需要15+4=19天。故正确答案为A。标签赋值思想
2、单选题 _____
A: 5
B: 6
C: 8
D: 9
参考答案: A
本题解释:正确答案是A考点计算问题解析
3、单选题 随着通讯市场竞争日益激烈,某通讯公司的手机市话费按原标准每分钟降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,那么,原收费标准为每分钟_____。
A: (5/4)b-a元
B: (5/4)b+a元
C: (3/4)b+a元
D: (4/3)b+a元
参考答案: D
本题解释:正确答案是D考点和差倍比问题解析设原收费标准为x元每分钟,两次降低价格后的价格为b元,可列方程(x-a)×(1-25%)=b,解得x=(4/3)b+a,故正确答案为D。
4、单选题 小雨把平时节省下来的全部1角的硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小雨所有的1角硬币合起来总共是多少钱?_____
A: 3元
B: 5元
C: 4元
D: 6元
参考答案: D
本题解释:正确答案是D考点计数模型问题解析解析1:由硬币可围成正三角形、正方形可知,硬币总数既是3的倍数又是4的倍数,即3、4的最小公倍数是12,结合选项只有6元(即60角)满足条件,故正确答案为D。解析2:设正方形每边个数为x,则三角形每边个数为x+5,因此有4(x-1)=3(x+5-1),解得x=16。因此硬币总个数为4×(16-1)=60,也即硬币合计6元。故正确答案为D。标签最小公倍数数字特性
5、单选题 某商场举办羽绒服专卖会,一件羽绒服连续两次8折降价销售(即连续2次降价20%),降价后的价格为320元,问原价是多少?_____
A: 500
B: 450
C: 400
D: 600
参考答案: A
本题解释:正确答案是A考点经济利润问题解析设原价为A元,连续两次降价20%后为0.8×0.8A=320,计算时采用分步计算而不计算0.8×0.8,易得A=500,故正确答案为A。