1、单选题 甲、乙、丙、丁四人,其中每三个人的岁数之和分别是55、58、62、65。这四个人中年龄最小的是_____
A: 7岁
B: 10岁
C: 15岁
D: 18岁
参考答案: C
本题解释:参考答案:C
题目详解:根据题意:设四个人的岁数分别为a、b、c、d;则得每三个人的岁数之和分别为a+b+c,a+b+d,a+c+d,b+c+d;这四个数之和为3(a+b+c+d)。四人的年龄和为:a+b+c+d=(55+58+62+65)÷3=80;而年龄大的三个人的年龄之和一定是最大的,由题目可知:四个数中65最大,即年龄大的三个人年龄之和为65;则最后剩下的人的年龄一定是最小的;所以年龄最小的为80-65=15岁;所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值
2、单选题 77个连续自然数的和是7546,则其中第45个自然数是_____。
A: 91
B: 100
C: 104
D: 105
参考答案: C
本题解释:77个自然数的和是7546,故平均数7546÷77=98为中位数,也即第39个数,因此第45个数为104。故选C。
3、单选题 一篇文章,现有甲乙丙三人,如果由甲乙两人合作翻译,需要10小时完成,如果由乙丙两人合作翻译,需要12小时完成,现在先由甲丙两人合作翻译4小时,剩下的再由乙单 独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,需要_____小时能够完成。
A: 15
B: 18
C: 20
D: 25
参考答案: A
本题解释:正确答案是 A。考点:工程问题 解析:设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。
4、单选题 在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,下列数字满足条件的是:_____
A: 25
B: 20
C: 18
D: 17
参考答案: A
本题解释:A。【解析】对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5,先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数。故选A。
5、单选题 (2005北京社招,第13题)某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院共有多少个座位?_____
A: 1104
B: 1150
C: 1170
D: 1280
参考答案: B
本题解释:参考答案:B
题目详解:解法一:根据项数公式: