1、单选题 先将线段AB分成20等分,线段上的等分点用“△”标注,再将该线段分成21等分,等分点用“O”标注(AB两点都不标注),现在发现“△”和“O”之间的最短处为2厘米,问线段AB的长度为多少?_____
A: 2460厘米
B: 1050厘米
C: 840厘米
D: 680厘米
参考答案: C
本题解释:参考答案:C
题目详解:解法一:前后两次段数的最小公倍数是:20×21=420,再由“△”和“O”之间的最短长度只可能发生在线段AB的两端,且“△”和“O”之间的最短处为2厘米,则:AB=20×21×2=840cm。所以,选C。解法二:两种不同标号间的最短距离为:
2、单选题 有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14
B: 17
C: 28
D: 34
参考答案: D
本题解释:参考答案
题目详解:根据题意,由于苹果分到最后余2,桔子分到最后余7,那么:
3、单选题 男女并排散步,女的3步才能跟上男的2步。两人从都用右脚起步开始到两人都用左脚踏出为止,女的应走出多少步?_____
A: 6步
B: 8步
C: 12步
D: 多少步都不可能
参考答案: A
本题解释:参考答案:A
题目详解:根据题意,即求2,3的最小公倍数;因为并排:那么男人走两步与女人走三步同速;首先男人前两步为:右脚--左脚,女人前三步为:右脚--左脚--右脚;等到男人后两步为:右脚--左脚,女人后三步为:左脚---右脚---左脚,此时与男人同时迈左脚出;女人一共走了6步。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
4、单选题 如图所示,街道ABC在B处拐弯,在街道一侧等距装路灯,要 求A、B、C处各装一盏路灯,这条街道最少装多少盏路灯?_____
A: 18
B: 19
C: 20
D: 21
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,灯距应取715和520的最大公约数,即65米;则最少装路灯的数量为:(715+520)÷65+1=20盏。所以,选C考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
5、单选题 6.有两个两位数,这两个两位数的最大公约数与最小公倍数的和是91,最小公倍数是最大公约数的12倍,求这较大的数是多少?_____
A: 42
B: 38
C: 36
D: 28
参考答案: D
本题解释:参考答案
题目详解:此题可以根据定义来解答。这两个数的最大公约数是: