1、单选题 一艘游轮从甲港口顺水航行至乙港口需7小时,从乙港口逆水航行至甲港口需9小时。问如果在静水条件下,游轮从甲港口航行至乙港口需多少小时?_____
A: 7.75小时
B: 7.875小时
C: 8小时
D: 8.25小时
参考答案: B
本题解释:正确答案是B考点行程问题解析解析1:根据所需时间比,设距离为63,则游轮顺水和逆水的速度分别为9、7,则游轮自身的速度为(9+7)÷2=8,因此在静水条件下所需时间为63÷8=7.875小时。解析2:设甲乙港口相距距离为s,则游轮顺水和逆水的速度分别为s/7、s/9,游轮自身速度为(s/7+s/9)÷2,因此静水条件下所需时间为s÷[(s/7+s/9)÷2]=63÷8=7.875小时。标签顺水漂流模型赋值思想
2、单选题 大小猴子共35只,它们一起去采摘水蜜桃。猴王不在的时候,一只大猴子一小时可采15千克,一只小猴子一小时可采摘11千克。猴王在场监督的时候,每只猴子不论大小每小时都可多采摘12千克。有一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘了4400千克水蜜桃。在这个猴群中,共有小猴子多少只?_____
A: 18
B: 20
C: 22
D: 24
参考答案: B
本题解释:正确答案是B考点鸡兔同笼问题解析解析1:设猴群中小猴有n只,则[(15+12)×(35-n)+(11+12)n]×2+[15×(35-n)+11n]×6=4400,可得n=20。解析2:我们可以先把35只猴子全部看成小猴子,那么这8小时可完成量为11×35×8+12×35×2=3920。然后分析差异,大猴子每小时比小猴子多采15-11=4,可得大猴子的数量为(4400-3920)÷8÷4=15,故小猴子数量为20。所以正确答案为B。标签差异分析
3、单选题 6辆汽车排成一列纵队,要求甲车和乙车均不在队头或队尾,且正好间隔两辆车。问共有多少种不同的排法?_____
A: 48
B: 72
C: 90
D: 120
参考答案: A
本题解释:正确答案是A,全站数据:本题共被作答1次,正确率为100.00%解析假设六辆车的位置为A-B-C-D-E-F,按照题干的说法,甲乙均不在首位,即不能放在A或F,同时中间还需要间隔两辆车,所以甲乙的位置只能选择B或E。即题目转化为”四辆汽车放入ACDF位置,甲乙两车放入BE位置,一共有多少种方法?”按照排列组合的解法,前四辆汽车一共有P44=24种情况,甲乙两车一共有P22=4种情况,所以两者相乘,一共有48种情况。故正确答案为A。速解本题需要辅助画图理解,得到关键信息”甲乙只能在B或E位置”,即可求解。本题如果增加一个车位,就非常复杂了,需要分类讨论。而在现有情况下,不需要分类讨论。考点排列组合问题笔记编辑笔记
4、单选题 有100个编号为1—100的罐子,第1个人在所有编号为1的倍数的罐子中倒入1毫升水,第2个人在所有编号为2的倍数的罐子中倒入1毫升水,……,第100个人在所有编号为100的倍数的罐子中倒入1毫升水,问此时第92号罐子中装了多少毫升的水?_____
A: 2
B: 6
C: 46
D: 92
参考答案: B
本题解释:正确答案是B考点倍数约数问题解析分解92的质因数,可得92=2×2×23,于是可知100以内能够整除92的整数为1、2、4、23、46、92,共6个,即共有6次机会向92号罐子中注水,因此最后92号罐子中装了6毫升的水。故正确答案为B。
5、单选题 在某状态下,将28克某种溶质放入99克水中,恰好配成饱和溶液。从中取出1/4溶液,加入4克溶质和11克水,请问此时浓度变为多少?_____
A: 21.61%
B: 22.05%
C: 23.53%
D: 24.15%
参考答案: B
本题解释:正确答案是B考点浓度问题解析本题需要注意判断溶液的浓度,首先要判断溶液是否饱和。由于99克水最多可以溶解28克溶质,则11克水最多可以溶解28/9克溶质,即小于4克溶质,因此饱和溶液加入4克溶质和11克水仍为饱和溶液,故饱和溶液浓度为:28/(28+99)×100%≈22.05%,故正确答案为B。