1、单选题 甲、乙两人各写一个三位数,发现这两个三位数有两个数字是相同的,并且它们的最大公约数是75,那么这两个三位数的和的最大值是多少?_____
A: 1725
B: 1690
C: 1545
D: 1340
参考答案: A
本题解释:参考答案:A
题目详解:由题意可知:75的倍数的最大三位数是:13×75=975;有两个数字相同的另一个75的倍数最大的是:10×75=750;所以,这两个三位数的和的最大值是:975+750=1725。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
2、单选题 如图所示,街道ABC在B处拐弯,在街道一侧等距装路灯,要求A、B、C处各装一盏路灯,这条街道最少装多少盏路灯?_____
A: 18
B: 19
C: 20
D: 21
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,灯距应取715和520的最大公约数,即65米;则最少装路灯的数量为:(715+520)÷65+1=20盏。所以,选C考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
3、单选题 对一批编号为1—100,全部开关朝上(开)的灯进行一下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关;一直到100的倍数。则最后状态为关的灯有几个?_____
A: 10
B: 15
C: 20
D: 大于20
参考答案: A
本题解释:参考答案:A
题目详解:最后处于关闭状态的灯,其开关被拨动的次数为奇数,因此该题转化为:求1—100中有多少个数其约数个数为奇数。根据约数的定义:如果b为a的约数,则有a=bc(c为整数),故除了b=c,即a为完全平方数这种情况之外,a的约数个数一定都是偶数。由于
4、单选题 先将线段AB分成20等分,线段上的等分点用“△”标注,再将该线段分成21等分,等分点用“O”标注(AB两点都不标注),现在发现“△”和“O”之间的最短处为2厘米,问线段AB的长度为多少?_____
A: 2460厘米
B: 1050厘米
C: 840厘米
D: 680厘米
参考答案: C
本题解释:参考答案:C
题目详解:解法一:前后两次段数的最小公倍数是:20×21=420,再由“△”和“O”之间的最短长度只可能发生在线段AB的两端,且“△”和“O”之间的最短处为2厘米,则:AB=20×21×2=840cm。所以,选C。解法二:两种不同标号间的最短距离为:
5、单选题 (2008.辽宁)张警官一年内参与破获的各类案件有100多件,是王警官的5倍,李警官的五分之三,赵警官的八分之七,问李警官一年内参与破获多少案件?_____
A: 175
B: 105
C: 120
D: 不好估算
参考答案: A
本题解释:参考答案:A
题目详解:设张警官破获的案件为x件,则:根据“是王警官的5倍,李警官的五分之三,赵警官的八分之七”可知,张警官破获了5×3×7×N件,又因100故张警官破获的案件只能为105;则李警官一年内参与破获了案件:105÷3/5=175件。因此,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数