1、单选题 某班有60名学生,在第一次测验中有32人得满分,在第二次测验中有27人得满分。如果两次测验中都没有得满分的学生有17人,那么两次测验中都获得满分的人数是多少?_____
A: 13人
B: 14人
C: 15人
D: 16人
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析本题注意按照得满分得到两个类,进行容斥原理分析。设第一次测验得满分为事件A,第二次测验得满分为事件B,则两次都得满分为A∩B,将其设为x人,得过满分为A∪B。根据公式A∪B=A+B-A∩B可得:60-17=32+27-x解得x=16,因此两次测验中都获得满分的人数是16人,故正确答案为D。
2、单选题 建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?_____
A: 20人
B: 30人
C: 40人
D: 50人
参考答案: B
本题解释:正确答案是B考点抽屉原理问题解析采取逆向思维法。不喜欢乒乓的1600-1180=420,不喜欢羽毛球的1600-1360=240,不喜欢篮球的1600-1250=350,不喜欢足球的1600-1040=560,要使四项运动都喜欢的人数最少,那么不喜欢的人数就要最多那么都尽量不相交,从而达到最多:420+240+350+560=1570人,所以喜欢的最少的为1600-1570=30人,故正确答案为B。
3、单选题 在空间中最多能放置多少个正方体,使得任意两个正方体都有一部分表面相接触?_____
A: 4
B: 5
C: 6
D: 7
参考答案: A
本题解释:正确答案是A考点几何问题解析注意到一个立方体的六个面,形成3组相对面,而一组相对面上不可能同时贴有立方体,因此一个立方体周围最多可以贴3个立方体,故最多能放置4个立方体,使得任意两个立方体均有部分表面相接触。下图即为一个示例:
4、单选题 办公室有甲、乙、丙、丁4位同志,甲比乙大5岁,丙比丁大2岁。丁三年前参加工作,当时22岁。他们四人现在的年龄之和为127岁。那么乙现在的年龄是_____。
A: 25岁
B: 27岁
C: 35岁
D: 40岁
参考答案: C
本题解释:正确答案是C考点年龄问题解析丁3年前22岁,则现在25岁,丙比丁大2岁,丙现在27岁,甲、乙年龄和为127-(25+27)=75岁,甲比乙大5岁,则乙现在的年龄是(75-5)÷2=35岁。故正确答案为C。
5、单选题 某单位举办庆国庆茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量。那么原来每箱苹果重多少千克?_____
A: 16
B: 24
C: 32
D: 36
参考答案: C
本题解释:正确答案是C考点和差倍比问题解析解析1:设原来每箱苹果重x千克,根据题意可得:4(x-24)=x,解得x=32,故选择C选项。解析2:原来一共4箱苹果,由“从每箱取出24千克后,结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量”,可知总共取出来的苹果重量是原来3箱苹果的重量,因此原来每箱苹果的重量为:24×4÷3=32,故选择C选项。