1、单选题 _____
A: A
B: B
C: C
D: D
参考答案: A
本题解释:正确答案是A考点计算问题解析
2、单选题
A: A
B: B
C: C
D: D
参考答案: C
本题解释:正确答案是C解析
3、单选题 某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?_____
A: 120
B: 144
C: 177
D: 192
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析假设只参加一种考试的有X人,则可知:X+46×2+24×3=63+89+47,可知X=35,因此接受调查的学生共有35+46+24+15=120人。故正确答案为A。注:将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
4、单选题 甲从某地匀速出发,一段时间后,乙从同一地点以同样的速度同向前进,在K时刻乙距离起点30米,当乙走到甲在K时刻的位置时,甲离起点108米,问,此时乙距起点多少米?_____
A: 39
B: 69
C: 78
D: 138
参考答案: B
本题解释:正确答案:B解析:本题属于路程问题。K时刻之后,甲、乙走过的距离相等。若K时刻后,乙走过的距离为X,则2X+30=108解得X=39。此时乙和起点的距离为:30+39=69米。本题画线段图,可直接解出。故答案为B。
5、单选题 甲、乙、丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7册,其余各捐11册,乙班有1人捐6册,有3人各捐8册,其余各捐10册,丙班有2人捐4册,6人各捐7册,其余人各捐9册。已知甲班捐书总数比乙班多28册,乙班比丙班多101册,各班捐书总数在400~550册之间。那么,甲、乙、丙三个班各有多少人?_____
A: 48、50、53
B: 49、51、53
C: 51、53、49
D: 49、53、51
参考答案: C
本题解释:正确答案是C考点和差倍比问题解析甲班比丙班多28+101=129册,则甲班总数在529—550之间;甲班为6+2×7+11n=20+11n,多捐2册就能被11整除,所以甲班总数只能是548(550-2)或537,因此丙班是419或408;丙班为2×4+6×7+9m=50+9m,多捐4册就能被9整除。因此丙班捐了419本,则丙班有(419-50)÷9+8=49人,故正确答案为C。