1、单选题 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?_____
A: 37
B: 36
C: 35
D: 34
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析本题注意按照不合格得到三个类,进行容斥原理分析。分别设三项全部合格、仅一项不合格的产品有A、B种,根据题意可得B+7+1=52-A,3×1+2×7+1×B=8+10+9,解得A=34,B=10。故正确答案为D。公式:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看做三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。标签整体考虑公式应用
2、单选题 甲、乙、丙、丁四人做纸花,已知甲、乙、丙三人平均每人做了37朵,乙、丙、丁三人平均每人做了39朵,已知丁做了41朵,问甲做了多少朵?_____
A: 35朵
B: 36朵
C: 37朵
D: 38朵
参考答案: A
本题解释:正确答案是A考点平均数问题解析解析1:甲、乙、丙三人做的纸花的平均数比乙、丙、丁三人做的纸花的平均数小2,则甲比丁做的纸花少2×3=6朵,因此甲做了41-6=35朵,故正确答案为A。解析2:乙、丙、丁三人共做了39×3=117朵,乙、丙两人共做了117-41=76朵,甲、乙、丙三人共做了37×3=111朵,则甲做了111-76=35朵,故正确答案为A。
3、单选题 铁路沿线的电线杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟。这列火车每小时运行多少千米?_____
A: 50
B: 60
C: 70
D: 80
参考答案: B
本题解释:正确答案是B考点行程问题解析从第一根电线杆到第51根电线杆,火车经过的距离=(51-1)×40=2000(米),2分钟行驶2000米,则火车每小时运行2000×(60/2)=60000(米),即60千米,故正确答案为B。
4、单选题 在一个老年活动中心,会下象棋的有59人,会下围棋的有48人,两种棋都不会下的有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?_____
A: 89人
B: 107人
C: 129人
D: 137人
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析根据两集合容斥原理,设该俱乐部总人数为a,则59+48-30=a-12,解得a=89(人),故正确答案为A。注:两集合容斥原理推论公式:满足条件1的个数+满足条件2的个数-都满足的个数=总数-都不满足的个数。
5、单选题 有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第一班的学生坐车从学校出发的同时,第二班学生开始步行。车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车每小时50公里,那么,要使两班学生同时到达少年宫,第一班学生步行了全程的几分之几?(学生上下车时间不计)_____。
A: 1/7
B: 1/6
C: 3/4
D: 2/5
参考答案: A
本题解释:正确答案是A考点行程问题解析为了使两班同时到达,必须满足一个条件,即两班行走的距离相等,坐车的距离也相等。设二班步行的距离为x,一班坐车的距离为y,则一班行走的距离也为x,二班的坐车距离为y。由线段图可知:二班步行时间=(一班坐车时间+空车跑回接二班的时间),所以得x/4=y/40+(y-x)/50,解得x/y=1/6,所以x占全程的1/7,故正确答案为A。