1、单选题 如右图所示,正方形ABCD的边长为5cm,AC、BD分别是以点D和点C为圆心、5cm为半径作的圆弧。问阴影部分a的面积比阴影部分b小_____。(π取3.14)
参考答案: B
2、单选题 两个圆柱形水井,甲井的水深是乙井的一半,水面直径是乙井的2倍,蓄水量为40立方米,问乙井的蓄水量为多少立方米?_____
A: 20
B: 40
C: 60
D: 80
参考答案: A
本题解释:正确答案是A考点几何问题解析甲井水面直径是乙井的2倍,则水面面积是乙井的4倍,而水深为乙井的一半,因此甲井蓄水体积是乙井的2倍,因此乙井的蓄水量是:40÷2=20立方米,故正确答案为A。
3、单选题 一小型货车站最大容量为50辆车,现有30辆车,已知每小时驶出8辆,驶入10辆,则多少小时车站容量饱和?_____
A: 8
B: 10
C: 12
D: 14
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析因为每小时驶出8辆,驶入10辆,所以每小时车站增加10-8=2辆车,所以时间为(50-30)÷2=10小时。故正确答案为B。
4、单选题 射箭运动员进行训练,10支箭共打了93环,且每支箭的环数都不低8环。问命中10环的箭数最多能比命中9环的多几支?_____
A: 2
B: 3
C: 4
D: 5
参考答案: D
本题解释:正确答案是D,解析解析1:由题可知,”每支箭的环数都不低于8环”,所以环数只能取8、9、10环。假设10支箭都打了8环,则最低要打80环,而实际打的93环则是由于有9环和10环的贡献。与80环相比,每一个9环相当于多1环,每一个10环相当于多2环,所以设10环的有a支,9环的b支,则得到方程2a+b=93-80。这时,利用代入法,从”最多”的选项开始代入,a-b=5,解得a=6,b=1,即10环的是6支,9环是1支,8环是3支,可以成立。故正确答案为D。解析2:从另一个极端出发,如果每支箭的环数都打中10环,应该是100环,而实际为93环,少了7环。现在要求中10环的箭数”最多”能比命中9环的多几支,即要求10环尽量多,同时9环尽量少。所以少的7环尽可能由8环的箭产生,但是由于每支8环只能差2的整数倍,所以最多差6环,还需要有一支9环的。所以10环6支,9环1支,8环3支可以让差距最大。故正确答案为D。速解如果列方程,属于不定方程,未知数的个数多于方程个数,需要靠代入法解决。而题目真正的考点在于”最多”这个词的理解,即10环尽量多,9环尽量少,在这个前提下分析题目,才能得到最简的方式。考点计数模型问题笔记编辑笔记
5、单选题 有一条新修的道路,现在需要在该道路的两边植树,已知路长为5052米,如果每隔6米植一棵树,那么一共需要植多少棵树?_____
A: 1646
B: 1648
C: 1686
D: 1628
参考答案: C
本题解释:正确答案是C考点计数模型问题解析这是一个双边线性植树模型,根据基本公式,棵树=2×(5052÷6+1)=2×(842+1)=1686(棵),故正确答案为C选项。注:双边线性植树,棵树=2×(路长÷间隔+1)。