1、单选题 有一串数1,9,9,8……自第5个起,每个都等于前面4个数字之和的个位数,这样一直写下去,前99个数中有多少个偶数?_____
A: 10
B: 19
C: 20
D: 25
参考答案: C
本题解释:参考答案:C
题目详解:依题意:“1,9,9,8”从第5个起,每个都等于前面4个数字之和的个位数;各个数的奇偶性为:奇奇奇奇偶奇奇奇奇偶……;即每5个数有一个偶数:前99个数中有(99-4)÷5+1=20个偶数;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性
2、单选题 某数加上5再乘以5再减去5再除以5结果还是5,这个数是多少?_____
B: 1
C: -1
D: 5
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析解析1:将过程逆反过来,可知这个数为:(5×5+5)÷5-5=1,故正确答案为B。解析2:此题目可采用直接代入法,将四选项依次代入验证可知只有B选项符合,故正确答案为B。
3、单选题 有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上表示信号,问共可表示多少种不同的信号?_____
A: 24种
B: 48种
C: 64种
D: 72种
参考答案: C
本题解释:正确答案是C考点排列组合问题解析挂灯的数目有4种情况:1.挂灯数为1,则有4种可能;2.挂灯数为2,则有4×3=12种可能;3.挂灯数为3,则有4×3×2=24种可能;4.挂灯数为4,则有4×3×2×1=24种可能;所以所有可能的信号数为4+12+24+24=64,故正确答案为C。
4、单选题 某服装厂要生产一批某种型号的学生服,已知每3米长的某种面料可做上衣2件。或做裤子3条,计划用300米长的这种布料生产学生服,应用多少米布料产生上衣,才能恰好配套?_____
A: 120
B: 150
C: 180
D: 210
参考答案: C
本题解释:答案:C【解析】3米长可做上衣2件,或裤子3条,则300米布料可做上衣200件,或裤子300条,即如需成套,则上衣和裤子的数量必须同样多,那么上衣所用布料当为3/5,即180米,裤子为120米,共可做120套服装。所以答案为选项C。
5、单选题 某大型项目考察团队的所有员工年龄都在26~35岁之间,问:改考察团队至少有多少人才能保证在同一年出生的有5人?_____
A: 41
B: 49
C: 50
D: 51
参考答案: A
本题解释:【答案】A。解析:最不利情况就是每年出生的人都有4个人,做题方法:最不利的情况数+1=4×10+1=41