微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 两个不同的圆最多可以有两个交点,那么三个不同的圆最多可以有几个交点?_____
A: 5个
B: 6个
C: 7个
D: 8个
参考答案: B
本题解释:正确答案是B解析两个圆相交最多有两个交点,第三个圆与这两个圆分别相交最多增加4个交点,所以最多有6个交点,故正确答案为B。几何问题
2、单选题 已知盐水若干千克,第一次加入一定量的水后,盐水浓度变为6%,第二次加入同样多的水后,盐水浓度变为4%,第三次再加入同样多的水后盐水浓度是_____。
A: 3%
B: 2.5%
C: 2%
D: 1.8%
参考答案: A
本题解释:正确答案是A考点浓度问题解析赋值盐量为12,则根据第一次加入水后的浓度为6%知此时盐水总量200;第二次加水后浓度为4%可知此时盐水总量为300。因此每次加水量为300-200=100。由此可知第三次加入同样多的水后盐水总量为400,因此浓度为3%。故正确答案为A。标签赋值思想
3、单选题 地铁检修车沿地铁线路匀速前进,每6分钟有一列地铁从后面追上,每2分钟有一列地铁迎面开来。假设两个方向的发车间隔和列车速度相同,则发车间隔是_____。
A: 2分钟
B: 3分钟
C: 4分钟
D: 5分钟
参考答案: B
本题解释:正确答案是B考点行程问题解析解析1:套用发车间隔公式,间隔=(2×6×2)÷(6+2)=3(分钟)。
4、单选题 自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100<P<1000,则这样的P有几个?_____
A: 不存在
B: 1个
C: 2个
D: 3个
参考答案: C
本题解释:正确答案是C解析由"
除以10的余数为9,P除以9的余数为8,P除以8的余数为7",满足差同减差,对应口诀可知其符合表达式为360n-1,由于100<P<1000,则100<360n-1<1000,所以n能取1、2,则满足条件的P有两个,即359和719,故正确答案为C。注释:同余问题需要掌握如下口诀:余同取余,和同加和,差同加差,最小公倍数做周期。口诀解释:余同取余,例如"一个数除以7余1,除以6余1,除以5余1",可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如"一个数除以7余1,除以6余2,除以5余3",可见除数与余的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如"一个数除以7余3,除以6余2,除以5余1",可见除数与余的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。余数与同余问题标签同余问题
5、单选题 有十名学生参加某次数学竞赛,已知前八名的平均成绩是90分,第九名比第十名多2分,所有学生的平均成绩是87分。问第九名学生的数学成绩是几分?_____
A: 70
B: 72
C: 74
D: 76
参考答案: D
本题解释:正确答案是D解析第九名和第十名的成绩和为87×10-90×8=150,第九名比第十名多2分,所以第九名的分数=(150+2)÷2=76(分),故正确答案为D。平均数问题