微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 一个长方体形状的盒子长、宽、高分别为20厘米、8厘米和2厘米,现在要用一张纸将其六个面完全包裹起来,要求从纸上剪下的部分不得用作贴补,请问这张纸的大小可能是下列哪一个?_____
A: 长25厘米,宽17厘米
B: 长26厘米,宽14厘米
C: 长24厘米,宽21厘米
D: 长24厘米,宽14厘米
参考答案: C
本题解释:正确答案是C考点几何问题解析由题意知,盒子的表面为:2×(20×8+20×2+2×8)=432(平方厘米),纸的面积必须比盒子的表面积大才能完全包裹盒子。计算四个选项中长和宽相乘产生的面积值,A项为25×17=425(平方厘米),B项为26×14=364(平方厘米),C项为24×21>480>432(平方厘米),D项为24×14<26×14=364(平方厘米),仅C项的面积值大于432。故正确答案为C。
2、单选题 31.21×16+3.121×120﹢312.1×6.2的值是_____。
A: 3121
B: 2808.9
C: 4125
D: 3768
参考答案: B
本题解释:正确答案是B解析原式=31.21×(16+12+62)=31.21×90=312.1×9,观察式子可知,结果是小数,故正确答案为B。计算问题
3、单选题 一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?_____
A: 16天
B: 20天
C: 22天
D: 24天
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
4、单选题 下图中的甲和乙都是正方形,BE=6厘米,EF=4厘米。那么,阴影部分ABC的面积是多少平方厘米?_____
A: 20
B: 24
C: 21
D: 18
参考答案: D
本题解释:正确答案是D考点几何问题解析
5、单选题 从一副完整的扑克牌中,至少抽出_____张牌,才能保证至少6张牌的花色相同。
A: 21
B: 22
C: 23
D: 24
参考答案: C
本题解释:正确答案是C考点抽屉原理问题解析一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。