微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?_____
A: 2
B: 3
C: 4
D: 5
参考答案: B
本题解释:正确答案是B考点行程问题解析解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。公式:两运动体从两端同时出发,相向而行,不断往返:第N次迎面相遇,两运动体路程和=全程×(2N-1);第N次追上相遇,两运动体路程差=全程×(2N-1)。标签公式应用
2、单选题 百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?_____
A: 65
B: 70
C: 75
D: 80
参考答案: C
本题解释:C设原价为x元,则80%x+25=x,x=75元。
3、单选题 从1,3,9,27,81,243这六个数中,每次取出若干个数(每次取数,每个数只能取一次)求和、可以得到一个新数,一共有63个数。如果把它们以小到大依次排列起来是:1,3,4,9,10,12,…。那么,第60个数是_____。
A: 220
B: 380
C: 360
D: 410
参考答案: C
本题解释:正确答案是C考点计算问题解析逆向考虑,则为从大到小排列,具体如下:第63个数:243+81+27+9+3+1第62个数:243+81+27+9+3第61个数:243+81+27+9+1则第60个数为243+81+27+9=270+90=360,故正确答案为C。
4、单选题 任意取一个大于50的自然数 ,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?_____
B: 1
C: 2
D: 3
参考答案: B
本题解释:参考答案:B
题目详解:解法一:采用特殊值法:取64,
5、单选题 假设五个相异的正整数的平均数是15,中位数是18,则此五个相异的正整数中最大数的最大值可能是多少?_____
A: 24
B: 32
C: 35
D: 42
参考答案: C
本题解释:五个数和为15×5=75,第三大的数是18。要让最大的数尽可能大,则其他数尽可能小。最小的两个数为1、2。第二大的数最小为19,所以最大的数的最大值为75-1-2-18-19=35。