微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 有一路电车从甲站开往乙站,每五分钟发一趟,全程走15分钟。有一人从乙站骑自行车沿电车线路去甲站。出发时,恰好有一辆电车到达乙站,在路上他又遇到10辆迎面开来的电车,到站时恰好有一辆电车从甲站开出,那么,他从乙站到甲站共用多少分钟?_____
A: 40
B: 6
C: 48
D: 45
参考答案: A
本题解释:正确答案是A考点行程问题解析当编号为A1的第一辆车到达乙站时,编号为A4的第四辆车恰好刚从甲站出发,假设骑车人刚从乙站出发时,编号为A1的第一辆车到达乙站,则途中骑车人又遇到了10辆车,则当他到达甲站时,恰好编号为A12的第十二辆车从甲站开出,而此时编号为A9的第九辆车刚刚到达乙站,显然,电车从A1到A9所用的时间也恰是骑车人用的时间,所以答案为(9-1)×5=40分钟。正确答案选A。
2、单选题 甲有桌子若干张,乙有椅子若干把。如果乙用全部椅子换回数量同样多的桌子,则需补给甲320元;如果乙不补钱,就要少换回5张桌子。已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?_____
A: 16
B: 20
C: 48
D: 56
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析由“如果乙用全部椅子换回数量同样多的桌子,则需补给甲320元;如果乙不补钱,就要少换回5张桌子”,可知每张桌子的价钱为:320÷5=64,又知“已知3张桌子比5把椅子的价钱少48元”,可知椅子的价钱为:(64×3+48)÷5=48,那么每张桌子比椅子贵:64-48=16,又知“如果乙用全部椅子换回数量同样多的桌子,则需补给甲320元”,即相同数量的桌子和椅子总的差价为320元,则乙原有的椅子数量为:320÷16=20,故选择B选项。
3、单选题 有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上表示信号,问共可表示多少种不同的信号?_____
A: 24种
B: 48种
C: 64种
D: 72种
参考答案: C
本题解释:正确答案是C考点排列组合问题解析挂灯的数目有4种情况:1.挂灯数为1,则有4种可能;2.挂灯数为2,则有4×3=12种可能;3.挂灯数为3,则有4×3×2=24种可能;4.挂灯数为4,则有4×3×2×1=24种可能;所以所有可能的信号数为4+12+24+24=64,故正确答案为C。
4、单选题 甲、乙、丙、丁四人做纸花,已知甲、乙、丙三人平均每人做了37朵,乙、丙、丁三人平均每人做了39朵,已知丁做了41朵,问甲做了多少朵?_____
A: 35朵
B: 36朵
C: 37朵
D: 38朵
参考答案: A
本题解释:正确答案是A考点平均数问题解析解析1:甲、乙、丙三人做的纸花的平均数比乙、丙、丁三人做的纸花的平均数小2,则甲比丁做的纸花少2×3=6朵,因此甲做了41-6=35朵,故正确答案为A。解析2:乙、丙、丁三人共做了39×3=117朵,乙、丙两人共做了117-41=76朵,甲、乙、丙三人共做了37×3=111朵,则甲做了111-76=35朵,故正确答案为A。
5、单选题 用直线切割一个有限平面,后一条直线与此前每条直线都要产生新的交点,第1条直线将平面分成2块,第2条直线将平面分成4块。第3条直线将平面分成7块,按此规律将平面分为22块需_____。
A: 7条直线
B: 8条直线
C: 9条直线
D: 6条直线
参考答案: D
本题解释:正确答案是D考点几何问题解析根据题意可知,设n为直线,S为分成的平面数,n=1时,S=2;n=2时,S=4;n=3时,S=7;n=4时,S=11;n=5时,S=16;n=6时,S=22。所以6条线可将平面分成22部分。故答案为D。