1、在一次国际美食大赛中,中、法、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄罗斯评委给出的平均分是92,那么中国评委和俄罗斯评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:C【解析】设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2,又因为A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。
2、某机关共有干部、职工350人,其中55岁以上共有70人。现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。请问55岁以下的人裁减比例约是多少?_____。
A: 51% B: 43% C: 40% D: 34%
参考答案: B
3、小明用5天时间看完了一本200页的故事书。已知第二天看的页数比第一天多,第三天看的页数是第一、二两天看的页数之和,第四天看的页数是第二、三两天看的页数之和,第五天看的页数是第三、四两天看的页数之和。那么小明第五天至少看了_____页。
A: 84B: 78C: 88D: 94
参考答案: A 本题解释:【答案】A。解析:设小明第一天看了a页,第二天看了b页,则前五天看的页数依次为a,b,a+b,a+2b,2a+3b。这些数的和是200,可得5a+7b=200。因为5a与200都是5的倍数,所以b是5的倍数。因为ba,所以上式只有两组解b=20,a=12;b=25,a=5。将这两组解分别代入2a+3b,得到第五天至少看了84页。
4、某中学给住校生分配宿舍,如果每个房间住3人,则多出20人,如果每个房间住5人,则有2间没人住,其他房间住满。则总共有多少人是住校生?_____
A: 60B: 65C: 70D: 75
参考答案: B 本题解释:【答案】B。解析:显然在每间房3人的基础上增加2人,不仅包括了多出的人,还包括了空出的2间共10人,因此房间数为30÷2=15(间),因此总人数为15×3+20=65(人)。
5、某年级有四个班级,不算一班有210人,不算二班有199人,不算三班有196人,不算四班有205人,问:这个年级共有_____人?
A: 240B: 270C: 320D: 3 60
参考答案: B 本题解释:B【解析】设一、二、三、四班的人数分别为a,b,c,d人。不算一班的人数是210人,即b+c+d=210;不算二班的人数是199人,即a+c+d=199;不算三班的人数是196人,即a+b+d=196;不算四班的人数为205人,即a+b+c=205;四个式子相加:3(a+k+c+d)=810。a+b+c+d=270,即这个年级共有270人,故应选B。
6、一本100多页的书,被人撕掉了4张.剩下的页码总和为8037。则该书最多有多少页_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉四张纸的页码数之和是偶数,由剩下页码数是奇数可知总的页码数是奇数,排除B、D。若为C,则撕掉的页码数之和是138×(138+1)÷2—8037=1554>138×8,矛盾。A项符合题意。
7、设有9个硬币,其中有1分、5分、1角以及5角四种,且每种硬币至少有1个。若这9个硬币总值是1.77元,则5分硬币必须有几个?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:C。【解析】由题意知,每种硬币至少有1个,则知四种硬币各1个共0.66元,又由于硬币总值为1.77元,则还需增加1.11元,即5个硬币,从而需硬币1分1个,硬币5角2个,最后还需有1角。由于题意表明有9个硬币,应选2个5分硬币,因而共有3个5分硬币。
8、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释: C解析: 6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷1/5=30(厘米)故本题选C。
9、某技校安排本届所有毕业生分别去甲、乙、丙3个不同的工厂实习。去甲厂实习的毕业生占毕业生总数的32%,去乙厂实习的毕业生比甲厂少6人,且占毕业生总数的24%.问去丙厂实习的人数比去甲厂实习的人数_____。
A: 少9人B: 多9人C: 少6人D: 多6人
参考答案: B 本题解释:【答案】B。解析:根据题意去甲厂实习的人数占32%,去乙厂实习的人数占24%,因此去丙厂实习的人数占1-32%-24%=44%,故去丙厂的人数比去甲厂多44%-32%=12%;而去甲厂实习的人数比去乙厂的多32%-24%=8%,为6人,故去丙厂的人数比去甲厂的应多6÷8%×12%=9人,故答案选B。
10、某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?_____
A: 360B: 382.5C: 401.5D: 410
参考答案: B 本题解释:【答案】B。解析:如下表:
因此最少需要180+120+82.5=382.5元。
11、从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?_____
A: 240B: 310 C: 720 D: 1080
参考答案: B 本题解释: 答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
12、用两根同样长度的铁丝分别圈成圆形和正方形,圆形面积大约是正方形面积的几倍?_____
A: 3/πB: 4/πC: 5/πD: 6/π
参考答案: B 本题解释:B解析:正方形周长=4a=xa=x/4圆的周长=2πr=xr=x/2π正方形面积=aa=xx/16圆的面积=πrr=πxx/4ππ=xx/4π,圆的面积是正方形面积的(xx/4π)/(xx/16)=4/π=1.27,选B。
13、某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?_____
A: 1200 双 B: 1300 双 C: 1400 双 D: 1500 双
参考答案: D 本题解释:【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
14、某书店对顾客有一项优惠,凡购买同种书百册以上,按书价90%收款。某单位到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5,只有甲种书得到了90%的优惠,这时买甲种书所付总钱数是买乙种书所付总钱数的2倍,已知乙种书每本定价1.5元,那么优惠前甲种书每本原价是_____元。
A: 3B: 2.5C: 2D: 1.5
参考答案: C 本题解释:C【解析】设优惠前甲种书每册定价χ元。设甲种书册数为1,乙种书册数为3/5,则甲种书总价钱为90%χ×1,乙种书总价钱的2倍为1.5×3/5×2,此时有以下相等关系:90%χ=1.5×3/5×2,解得χ=2。即优惠前甲种书每册定价2元。
15、小王收购了一台旧电视机,然后转手卖出,赚取了30%的利润,1个月后,客户要求退货,小王和客户达成协议,以当时交易价格的90%回收了这台电视机,后来小王又以最初的收购价将其卖出。问小王在这台电视机交易中的利润率为:_____
A: 13% B: 17% C: 20% D: 27%
参考答案: A 本题解释:【答案】A。13%。
16、用2,3,4,5,6,7六个数字组成两个三位数,每个数字只用一次,这两个三位数的差最小是多少?_____
A: 47B: 49C: 69D: 111
参考答案: A 本题解释:因为每个数字只能用一次,显然首位决定大小,因此三个三位数的百位数字至少相差1,在这种情况下要使差值最小,则两个三位数为最接近,从而可知较小的三位数之末两位应尽可能大,而较大的三位数之末两位应尽可能小。在这个思想下,可知合适的三位数情况构造为523,476,此时三位数之末两位的差距最大,从而差值最小,最小差值为47。故选A。
17、小明和小强从400米环形跑道的同一点出发,背向而行。当他们第一次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向。小明每秒跑3米,小强每秒跑5米,则在两人第30次相遇时,小明共跑了多少米?
A: 11250B: 13550C: 10050D: 12220
参考答案: A 本题解释:【答案】A。
18、在一个口袋中有lO个黑球、6个白球、4个红球.至少从中取出多少个球才能保证其中有白球? _____
A: 14B: 15C: 17D: 18
参考答案: B
19、两个运输队,第一队有320人,第二队有280人,现因任务变动,要求第二队的人数是第一队人数的2倍,需从第一队抽调多少人到第二队?_____
A: 80人B: 100人C: 120人D: 140人
参考答案: C 本题解释:C设需抽调x人,根据题意可得2(320-x)=280+x,解得x=120人。
20、某单位《普法知识问答》的总平均分为87分,男同志的平均分为85分,女同志的平均分为90分,问此单位的男、女比例是多少? _____
A: 2/3B: 3/4C: 3/2D: 4/3
参考答案: C 本题解释: 【答案】C。解析:设女同志为1,男同志为x,则(85x+90)÷(1+x)=87,解得x=3/2,即为男、女的比例,选C。
21、某种灯泡出厂售价为6.2元,采用新的生产技术后可节约12%的成本,若售价不变,利润可比原来增长50%。问该产品最初的成本为多少元?_____
A: 3.8B: 4.5C: 5.0D: 5.5
参考答案: C 本题解释:【答案】C。解析:设原来的成本为x元,那么6.2一0.88x=(1+0.5)(6.2一x),解得x=5。故选C。
22、甲乙两人参加射击比赛,规定每中一发记5分,脱靶一发倒扣3分,两人各打了10分子弹后,分数之和为52,甲比乙多得了16分,问甲中了多少发?_____
A: 9B: 8C: 7D: 6
参考答案: B 本题解释:【答案】B。解析:甲、乙分数之和为52,差为16,则甲为(52+16)÷2=34分,根据鸡兔同笼公式可得,甲中了(34+3×10)÷(5+3)=8发。
23、某校学生列队以8千米/小时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队的老师传达一个命令,然后立即返回队尾,这位学生的速度为12千米/小时,从队伍出发赶到排头又回到队尾共用了7.2分钟,那么学生的队伍长_____米。
A: 360B: 400C: 450D: 500
参考答案: B 本题解释:B【解析】8千米/小时=(400/3)米/分,12千米/小时=200米/分,设队伍长χ米,则χ÷(200-400/3)+χ÷(200+400/3)=7.2,解得χ=400。
24、用1个70毫升和1个30毫升的空容器盛取20毫升的水到水池A中,并盛取80毫升的酒精到水池B中,倒进或倒出某个容器都算一次操作,则最少需要经过几次作?_____
A: 15B: 16C: 17D: 18
参考答案: A 本题解释:答案:A【解析】设70毫升的容器为X,30毫升的容器为Y。1.倒满Y,30毫升;2.Y倒入X至Y空,X30毫升;3.倒满Y,30毫升;4.Y倒入X至Y空,X60毫升;5.倒满Y,30毫升;6.Y倒入X至X满,X70毫升,Y20毫升;7.Y倒入水池A中。8.倒满X,70毫升;9.X倒入Y至Y满,X40毫升,Y30毫升;10.Y全倒掉;11.X倒入Y至Y满,X10毫升,Y30毫升;12.Y全倒掉;13.X倒入水池B中至X空;14.X倒满,70毫升;15.X倒入水池B中至X空。15次即可完成,答案为A项。
25、某单位有宿舍11间,可以住67人,已知每间小宿舍住5人,中宿舍住7人,大宿舍住8人,则小宿舍间数是_____。
A: 6B: 7C: 8D: 9
参考答案: A 本题解释:【答案】A。解析:设小宿舍有x间,中宿舍有y间,大宿舍有11-x-y间。依题意5x+7y+8(11-x-y)=67,得到3x+y=21。〔化为标准形式〕因为x、y均是大于0的整数,所以x<7。直接选A。〔确定解的范围〕
26、在同一环形跑道上小陈比小王跑得慢,两人都按同一方向跑步锻炼时,每隔12分钟相遇一次;若两人速度不变,其中一人按相反方向跑步,则隔4分钟相遇一次。问两人跑完一圈花费的时间小陈比小王多几分钟?_____
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:不妨设小王和小陈速度分别为x,y,跑道长度为s,则:两人都按同一方向跑步锻炼时,每隔12分钟相遇一次,说明s/(x—y)=12;若两人速度不变,其中一人按相反方向跑步,则每隔4分钟相遇一次,说明s/(x+y)=4;解得s=6x=12y,所以两人跑完一圈花费的时间小陈比小王多6分钟。
27、一个20人的班级举行百分制测验,平均分为79分,所有人得分都是整数且任意两人得分不同。班级前5名的平均分正好是16到20名平均分的2倍。则班级第6名和第15名之间的分差最大为多少分?_____
A: 34B: 37C: 40D: 43
参考答案: D 本题解释:【答案】D。解析:求班级第6名和第15名之间的分差最大,则第6名的成绩要尽可能的接近第5名的成绩,且前5名的成绩差距要尽可能的小,即前6名成绩是连续的自然数,第15名的成绩要尽可能的接近第16名的成绩,且后5名的成绩差距要尽可能的小,即后6名的成绩是连续的自然数。又由于班级前5名的平均分正好是16到20名平均分的2倍,则前5名的成绩决定了后5名的成绩。而同时满足这些条件的数列有多组,则可以使前5名的成绩为100、99、98、97、96,则第6名的成绩为95,由此,后5名得成绩为51、50、49、48、47,则第15名得成绩为52,所以第6名和第15名之间的分差最大为95-52=43。因此,本题答案选择D选项。
28、小明、小华、小强三人在超市购买学习用品,小明买了3本日记本,7支铅笔,1本单词本,共花了22元;小华买同样的4本日记本,10支铅笔,1本单词本,共花了29元,小强买同样的2本日记本,2只铅笔,2本单词本,共用多少钱?_____
A: 16B: 17C: 18D: 19
参考答案: A 本题解释:【答案】A。解析:设日记本x元,铅笔y元,单词本z元,则有3x+7y+z=22;4x+lOy+z=29。为方便计算,假设系数最大的铅笔价格为0,则有3x+z=22;4x+z=29。解得x=7,z=1。则小强花了:7×2+O×2+1×2=16元(需注意的是所求必须是x,y,z的整数倍才可以这样假设)。
29、有一块草地,上面的青草每天都生长得一样快。这块草地上的青草供20头牛吃,可以吃12天,或者供25头牛吃,可以吃8天。某人有牛70头,如果要保证青草不被吃完,需要在几块这样的草地上放牧?_____
A: 7B: 8C: 9D: 10
参考答案: A 本题解释:【答案】A。解析:假设这块草地原有草量为x,每天长草量为y,每头牛每天吃草的量为1,则根据公式可得:
解得x=10,这块草地每天的长草量够10头牛吃。要保证青草不被吃完,需要在70÷10=7(块)这样的草地上放牧。
30、甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。摩托车开始速度是50千米/小时,中途减速为40千米/小时。汽车速度是80千米/小时。汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时是在他出发后的多少小时?_____
A: 1B: 1(1/2)C: 1/3D: 2
参考答案: C 本题解释:C解析:汽车行驶100千米需100÷80=1(1/4)(小时),所以摩托车行驶了1(1/4)+1+,1/6=2(5/12)(小时)。如果摩托车一直以40千米/小时的速度行驶,2(5/12)小时可行驶96(2/3)千米,与100千米相差10/3千米。所以一开始用50千米/小时的速度行驶了10/3÷(50-40)=1/3(小时)。故本题选C。
31、A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值。分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?_____
A: 0B: 1C: 2D: 3
参考答案: C 本题解释:C【解析】不妨设A<B<C<D<E,则容易知道A+B=17,A+C=25,C+E=42,D+E=45,只要知道B+C的值就可以了。B+C只可能是剩下的28,31,34,39中之一。由于(A+B)+(A+C)+(B+C)=2(A+B+C)为偶数,而A+B和A+C都为奇数,故B+C为偶数,B+C只能是28或34;又B+C<B+D<B+E<C+E<D+E,即比B+C大的数至少有4个,故B+C不能是34或39,综合可知,B+C=28,于是可解A=7,B=10,C=18,D=21,E=24,能被6整除的数有18和24两个,选择C选项。
32、电视台要播放一部30集电视连续剧,如果要求每天安排播出的集数互不相等,该电视剧最多可以播_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:[解析]正确答案为A。应尽可能减少每天播出的电视剧,才能增加播出天数,即第一天播1集,第二天播2集,以此类推,播到第六天时,共播了21集,第七天需播9集,如果拖到第八天,则一定会出现两天播出的电视剧集数量相同的情况,所以只能选A。
33、把一根钢管锯成两端要4分钟,若将它锯成8段要多少分钟?_____
A: 16B: 32C: 14D: 28
参考答案: D 本题解释:【解析】D。锯成2段只需要锯1次,即每次需要4分钟,而锯8段需要锯7次,7×4=28,所以正确答案为D。
34、旅客携带了30公斤行李从A地乘飞机去B地,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是多少?_____
A: 10000 B: 800 C: 600 D: 400
参考答案: B 本题解释:【解析】B。行李超重部分每千克收取120÷(30-20)=12元,则飞机票价为12÷1.5%=800元。
35、真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是_____。
A: 6B: 5C: 7D: 8
参考答案: A 本题解释:【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。
36、在棱长为12厘米的正方体的面的中心挖洞,并通到对面。洞口是边长为3厘米的正方形。它现在的表面积是多?_____
A: 846平方厘米B: 986平方厘米C: 1134平方厘米D: 1324平方厘米
参考答案: C 本题解释:【解析】C。表面积=6×12×12-6×3×3+6×3×4×[(12-3)÷2]=1134平方厘米。
37、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
38、一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为_____
A: 3400元B: 3060元C: 2845元D: 2720元
参考答案: C 本题解释:【解析】C。八折和九折之间相差一折,即215+l25=340元,可算出原价为3400元,则进货价3400×0.9-215=2845元。
39、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释: 【解析】B。
分,该数值可以根据以上式子判定尾数为6,选择B。
40、今年小方父亲的年龄是小方的3倍,去年小方的父亲比小方大26岁,那么小方明年多大?_____
A: 16B: 13C: 15D: 14
参考答案: D 本题解释:去年小方的父亲比小方大26岁,即年龄差为26。今年小方父亲的年龄是小方的3倍,则年龄差是今年小方年龄的2倍,于是今年小方为13岁,因此明年小方14岁。故选D。
41、李大夫去山里给一位病人出诊,他下午1点离开诊所,先走了一段平路,然后爬上了半山腰,给那里的病人看病。半小时后,他沿原路下山回到诊所,下午3点半回到诊所。已知他在平路步行的速度是每小时4千米,上山每小时3千米,下山每小时6千米。请问:李大夫出诊共走了多少路?_____
A: 5千米B: 8千米C: 10千米D: l6千米
参考答案: B 本题解释: 
42、把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8=11。若对某些自然数n满足n-Sn=2007,则n最大值是_____。
A: 2010B: 2016C: 2019D: 2117
参考答案: C 本题解释:C【解析】当n-Sn=2007时,n为20ab的形式,依题意有20ab-(2+a+b)=2007,可得2000+10a+b-2-a-b=2007,得出a=1。当b取最大值9时,n有最大为2019。故选C。
43、一个正方体木块放在桌子上,每一面都有一个数,位于相对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B。题目给出相对面数字之和为13的条件,则注意将其余条件中出现的相对面合在一起。从这一点出发,可以看出若将小张与小王看到的面合在一起,则实际共看到2个顶面与4个不同的侧面。而四个不同侧面恰为两组对面,也即其数字之和为13×2=26,因此顶面的数字为(18+24—26)÷2=8,于是底面数字为13—8=5。故选B。
44、A,B两村庄分别在一条公路L的两侧,A到L的距离|AC|为1公里,B到L的距离|BD|为2公里,C,D两处相距6公里,欲在公路某处建一个垃圾站,使得A,B两个村庄到此处处理垃圾都比较方便,应建在离C处多少公里()
A: 2.75B: 3.25C: 2D: 3
参考答案: C 本题解释:答案: C 解析:连接AB,交公路L于点E,E点就是A、B两个村庄到此处处理垃圾都比较方便的地方,三角形ACE相似于三角形BDE,则AC⊥CE=BD⊥DE,而CE+DE=6,AC=1,BD=2,解得CE=2,故应建在离C处2公里。
45、把黑桃、红桃、方片、梅花四种花色的扑克牌按黑桃10张、红桃9张、方片7张、梅花5张的顺序循环排列。问第2015张扑克牌是什么花色?_____
A: 黑桃 B: 红桃 C: 梅花 D: 方片
参考答案: C 本题解释:【答案】C。解析:一个完整的循环包括黑桃10张,红桃9张,方片7张,梅花5张,共31张,2015÷31=65,刚好可以被31整除,因此第2015张牌是梅花。正确答案为C。
46、市民广场中有两块草坪,其中一块草坪是正方形,面积为400平方米,另一块草坪是圆形,其直径比正方形边长长10%,圆形草坪的面积是多少平方米?_____
A: 410 B: 400 C: 390 D: 380
参考答案: D 本题解释: 【解析】正方形的边长是20米,那么圆的半径是
米,那么圆形草坪的面积是
,故选D。
47、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返转卖给甲,但乙损失了10%,最后甲按乙卖给自己的价格的九折将这手股票又卖给了乙,则在上述股票交易中_____。
A: 甲刚好盈亏平衡DB: 甲盈利1元C: 甲盈利9元D: 甲亏本1.1元
参考答案: B 本题解释:【答案】B。解析:甲第一次将股票以1000×(1+10%)=1100元转卖给乙,盈利100元,乙又以1100×(1-10%)=990元转卖给甲,甲又以990×0.9=891元转卖给乙,则甲共盈利100-990+891=1元,故本题选择B。
48、河道赛道长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?_____
A: 48 B: 50 C: 52 D: 54
参考答案: C 本题解释: C。
49、杯中原有浓度为18%的盐水溶液100ml,重复以下操作2次,加入100ml水,充分配合后,倒出100ml溶液,问杯中盐水溶液的浓度变成了多少?_____
A: 9%B: 7.5%C: 4.5%D: 3.6%
参考答案: C 本题解释:第一次操作后盐水浓度为
,第二次操作后浓度为
,故应选择C。
50、有两只相同的大桶和一只空杯子,甲桶装牛奶,乙桶装糖水,先从甲桶内取出一杯牛奶倒入乙桶,再从乙桶取出一杯糖水和牛奶的混合液倒人甲桶,请问,此时甲桶内的糖水多还是乙桶内的牛奶多?_____。
A: 无法判定B: 甲桶糖水多C: 乙桶牛奶多D: 一样多
参考答案: D 本题解释:D【精析】假设乙桶内有N杯糖水,从甲中取出1杯牛奶倒入乙桶,乙桶中有l杯牛奶和N杯糖水。均匀后,再从乙桶取出一杯糖水和牛奶的混合物倒入甲桶,这杯混合物中有牛奶1/N+1杯有糖水N/N+1杯,因此乙桶中剩余的牛奶有N/N+1杯,而倒入甲桶中的糖水也有而N/N+1杯。甲桶内的糖水和乙桶内的牛奶一样多。
51、一只猎豹锁定了距离自己200米远的一只羚羊,以108千米/小时的速度发起进攻,2秒钟后,羚羊意识到危险,以72千米/小时的速度快速逃命。问猎豹捕捉到羚羊时,羚羊跑了多少路程?_____
A: 520米 B: 360米 C: 280米 D: 240米
参考答案: C 本题解释:【答案】C。解析:108千米/小时=30米/秒,72千米/小时=20米/秒,开始猎豹距离羚羊200米,羚羊意识到危险的时候,猎豹距离羚羊200米-30米/秒×2秒=140米。根据追击问题计算公式:速度差×追击时间=路程差,即(30-20)t=140,t=14秒,即猎豹捕捉到羚羊时,羚羊跑了14秒,路程为20×14=280米。
52、8.01×1.24+8.02×1.23+8.03×1.22的整数部分是多少?_____
A: 24B: 27C: 29D: 33
参考答案: C 本题解释:答案:C【解析】由8.03×1.22<8.02×1.23<8.01×1.24得:8.01×1.24+8.02×1.23+8.03×1.22<8.01×1.24×3<8×1.25×3=30。8.01×1.24+8.02×1.23+8.03×1.22>8×(1.24+1.23+1.22)=8×3.69=29.52。所以,所求的整数部分为29。故选C。
53、要折叠一批纸飞机,若甲单独折叠要半个小时完成,乙单独折叠需要45分钟完成,若两人一起折叠,需要多少分钟完成?_____
A: 10B: 15C: 16D: 18
参考答案: D 本题解释:答案:D【解析】此题实质上是一道工程问题。设纸飞机总量为1,则甲甲每分钟完成1/30,乙每分钟完成1/45,甲乙共花时间为1/(1/30+1/45)=18。故正确答案应为选项D。
54、100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?_____
A: 22B: 21C: 24D: 23
参考答案: A 本题解释:总的人数是固定的100人,要使参加人数第四多的活动最多,且每项的人数不一样,则其他的项的人数要尽量的少,那么,最后三名人数最少分别为1,2,3。设第四名的人数为x人,则前三名最少分别为(x+1),(x+2),(x+3),那么:1+2+3+x+(x+1)+(x+2)+(x+3)=100,解得x=22,故参加人数第四多的活动最多有22人参加。故选A。
55、A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?_____
A: 9B: 25C: 49D: 81
参考答案: D 本题解释:【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
56、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39。求这个三位数。_____
A: 196B: 348C: 267D: 429
参考答案: C 本题解释:【解析】C。代入法。首先排除A和D;根据所成的新数比原数的3倍少39,用每个选项的最后一个数乘以3再减去,所得的数只有C中有。
57、地球表面的陆地面积和海洋面积之比是29︰71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是_____
A: 284︰29B: 113︰55C: 371︰313D: 171︰113
参考答案: D 本题解释: 【解析】D。根据题干中的比例关系,可以推断出南、北半球的海洋面积之比为:
58、一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?_____
A: 10米/秒B: 15米/秒C: 25米/秒D: 30米/秒
参考答案: A 本题解释:【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。
59、四个相邻质数之积为17 017,他们的和为_____。
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:【答案】A。解析:l7017=l7×l3×11×7,它们的和为48。
60、一个班有50名学生,他们的名字都是由2个或3个字组成的。将他们平均分为两组之后,两组的学生名字字数之差为10。此时两组学生中名字字数为2的学生数量之差为_____。
A: 5B: 8C: 10D: 12
参考答案: C 本题解释:【解析】C。不定方程问题。由题意两组学生名字字数相差10,两边人数相同,即其中一组比另一组三名字人数多10人,则2名字人数少10人。
61、如果a、b均为质数,且3a+7b=41,则a+b=_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:C。a=2,b=5符合题意,选C。
62、甲、乙、丙三人沿着400米环形跑道进行800米跑比赛,当甲跑1圈时,乙比甲多跑17圈,丙比甲少跑17圈。如果他们各自跑步的速度始终不变,那么,当乙到达终点时,甲在丙前面_____。
A: 85米 B: 90米C: 100米 D: 105米
参考答案: C 本题解释:【解析】C。甲跑 1 圈,乙比甲多跑 17 圈,即 87 圈,丙比甲少跑 17 圈,即 67 圈,则甲、乙、丙三人速度之比为 7 ∶ 8 ∶ 6 。所以,当乙跑完 800 米 时,甲跑了 700 米 ,丙跑了 600 米 ,甲比丙多跑了 100 米 。
63、(1.2)2+(1.3)2+(1.4)2+(1.5)2的值是_____。
A: 6.30 B: 6.49 C: 7.56 D: 7.34
参考答案: D 本题解释:D。本题可采用尾数法,(1.2)2尾数为4,(1.3)2尾数为9,(1.4)2尾数为6,(1.5)2尾数为5,4+9+6+5尾数为4,所以正确答案为D项。
64、152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)_____
A: 1B: 7C: 12D: 24
参考答案: A 本题解释:A【解析】 设箱子个数为m,因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。如果m=11,那么球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。如果m≤9,那么球的总数≤10×9+(10+9+8+…+2)=90+54=144<152,所以m=10在m=10时,10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题正确答案为A。
65、田忌与齐威王赛马并最终获胜被传为佳话,假设齐威王以上等马、中等马和下等马的固定程序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是_____。
A: 2/3B: 1/3C: 1/6D: 1/9
参考答案: C 本题解释:【答案】C。解析:
故正确答案为C。
66、2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为_____。
A: 2003B: 2004C: 2005D: 2006
参考答案: B 本题解释:答案:B
67、超市经理为某商品准备了两种促销方案,第一种是原价打7折;第二种是买二件赠一件同样商品。经计算,两种方案每件商品利润相差0.1元,若按照第一种促销方案,则100元可买该商品件数最大值是_____
A: 33B: 47C: 49D: 50
参考答案: B 本题解释:【答案】B。解析:设该商品原价为x,则第一种方案下,三件促销价格为2.1x,第二种方案下,三件促销价格2x,两种方案差价为0.1x。根据题意,两种方案每件商品的利润差为0.1元,则三件商品差价0.3元,即0.1x=0.3,解得x=3元,那么按照第一种促销方案,商品售价2.1元,100元最多可以购买该商品47件,选择B项。
68、有一根长240米的绳子,从某一端开始每隔4米作一个记号,每隔6米也作一个记号。然后将标有记号的地方剪断,则绳子共剪成_____段。
A: 40B: 60C: 80D: 81
参考答案: C 本题解释:【答案】C。解析:容斥原理,每隔4米作一个记号,则作记号数为240÷4-1=59;每隔6米作一个记号,则作记号数为240÷6-1=39;其中每隔12米的记号重复被作两次,类似的记号数为240÷12-1=19。因此做记号总数为59+39-19=79,即绳子被剪成80段。故正确答案为C。两集合容斥原理公式:|A∪B|=|A|+|B|-|A∩B|
69、某商场在节日期间实行促销,规定凡是购买200元以上的商品可以优惠20%,那么用300元钱在该商场最多可买下价值多少元的商品?_____
A: 375B: 350C: 340D: 320
参考答案: A 本题解释:A。购买200元以上可以优惠20%,即购买200元以上的商品可以打八折。
70、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:C[解析]6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷15=30(厘米)故本题选C。
71、一批布料,全部用来做上衣可做60件,全部用来做裤子可做40条,现在做上衣、裤子、裙子各5件,恰好用去全部布料的1/4,剩下布料全部做裙子,则还可以做多少条?_____
A: 80B: 90C: 100D: 110
参考答案: B 本题解释:B【解析】设布料总量为120单位,则每件上衣需2单位布料,每条裤子需3单位布料,又上衣、裤子、裙子各做5件,用去︰120×1/4=30单位,所以每条裙子需1单位布料,则可再生产裙子︰(l20-30)÷1=90(条),故答案为B选项。
72、41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:4个人渡过去,1个人回来,因此每2次渡河可以渡过去3个学生.41=3×13+2,因此一共需要13×2+1=27次。
73、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?_____
A: 40B: 41C: 44D: 46
参考答案: C 本题解释:【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44
74、电影票10元一张,降价后观众增加一倍,收入增加1/5,则一张票降价多少元?_____
A: 8B: 6C: 4D: 2
参考答案: C 本题解释:【答案】C。设原来观众为1,设降价后为X元,则有(10×1):2X=5:6,得出X=6,则降价4元,选C。
75、有一个正方形花池,周围用边长25cm的方砖铺了一条宽1.5米的小路,共用1776块。花池的面积是多少平方米?_____
A: 111 B: 289 C: 400 D: 10404
参考答案: B 本题解释:【答案】B[解析]水池周围的面积是0.25×0.25×1776=111, 设外围正方形边长X,花池小正方形边长Y,则有X2-Y2=111, 20的平方是400,17的平方是289,400-289刚好是111(熟记20以内平方的好处…),所以花池面积就是289,选B。
76、建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?_____
A: 20人B: 30人C: 40人D: 50人
参考答案: B 本题解释:【答案】B。解析:采取逆向思维法。不喜欢乒乓的1600-1180=420,不喜欢羽毛球的1600-1360=240,不喜欢篮球的1600-1250=350,不喜欢足球的1600-1040=560,要使四项运动都喜欢的人数最少,那么不喜欢的人数就要最多那么都尽量不相交,从而达到最多:420+240+350+560=1570人,所以喜欢的最少的为1600-1570=30人,故正确答案为B。
77、某数的百分之一等于0.003,那么该数的10倍是多少?_____。
A: 0.003B: 0.03C: 0.3D: 3
参考答案: D 本题解释:D【解析】某数的百分之一为0.003,则该数为0.3,那么它的10倍为3。故正确答案为D。
78、教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生? _____
A: 15B: 12C: 10D: 9
参考答案: A 本题解释:A【解析】设最初有x 名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。
79、一个边长为8的立方体,由若干个边长为l的立方体组成,现在要将大立方体表面涂漆,请问一共有多少个小立方体被涂上了颜色?_____
A: 296B: 324C: 328D: 384
参考答案: A
80、商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱。已知一个顾客买的货物重量是另一个顾客的2倍。商店剩下的一箱货物重多少千克?_____。
A: 16 B: 18C: 19 D: 20
参考答案: D 本题解释:D 【解析】根据题意知道,货物的总重量是3个倍数,则它们的数字之和必定能被3整除,经过计算转换得知,剩下的那一箱重20千克。故选D。
81、一个车队有三辆汽车, 担负着五家工厂的运输任务,这五家工厂分别需要 7、9、4、10、6 名装卸工,共计 36 名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务。那么在这种情况下,总共至少需要_____名装卸工才能保证各厂的装卸需求?_____
A: 26 B: 27 C: 28 D: 29
参考答案: A 本题解释:【答案】A[解析]要求最少,那么三辆车分别装五家工厂里面最大的三个需求量,则可以满足条件,分别装10、9、7, 所以是10+9+7=26,选A。
82、
83、将700克14.3%的盐水与900克11.1%的盐水混合后,再加入200克盐,蒸发掉300克水后,该盐水的浓度为_____。
A: 22.2%B: 24.3%C: 26.7%D: 28.6%
参考答案: C 本题解释:【答案】C。解析:由题意可得,最后该盐水浓度为(700×14.3%+900×11.1%+200)÷(700+900+200-300)=400÷1500≈26.7%。故正确答案为C。
84、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有_____
A: 280种 B: 240种C: 180种D: 96种
参考答案: B 本题解释: 答案【B】由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。
85、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒?_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:【答案】C。解析:从一楼走到五楼,休息了3次,那么每爬上一层需要的时间为(210-30×3)÷4=30秒,故从一楼走到七楼需要30×(7-2)+30×(7-1)=330秒。故正确答案为C。
86、一个小数去掉小数部分后得到一个整数,这个整数加上原来的小数与4的乘积,得27.6。原来这个小数是_____。
A: 2.60B: 5.65C: 7.60D: 12.65
参考答案: B 本题解释:将原来的小数分成整数部分、小数部分和整个小数。此题可理解为:原小数的4倍与它的整数部分之和为27.6,这样27.6等于5个整数部分与4个小数部分之和。因为4个小数部分之和小于4,可知原小数的整数部分应满足:5倍整数<27<5倍整数+4,所以此整数为5。所以此小数为:5+(27.6-5×5)÷4=5.65,因此,本题正确答案为B。
87、用数字0,1,2(既可全用也可不全用)组成的非零自然数,按从小到大排列,问“1010”排在第几个?_____
A: 30B: 31C: 32D: 33
参考答案: A 本题解释:本题实际求由0,1,2构成的数字中,小于1010的有多少个。位数不固定,先按位数分类,再对每类进行计数。显然组成的非零一位数有2个;两位数有2×3=6(个);三位数有2×3×3=18(个);四位数中比1010小的为1000,1001,1002共计3个。故1010排在第30位。故选A。
88、一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?_____
A: 6秒钟B: 6.5秒钟C: 7秒钟D: 7.5秒钟
参考答案: D 本题解释:【答案解析】解析:追击问题的一种。坐在慢车看快车=>可以假定慢车不动,此时,快车相对速度为V(快)+V(慢),走的路程为快车车长200;同理坐在快车看慢车,走的距离为250,由于两者的相对速度相同=>250/x=200/6=>x=7.5(令x为需用时间)。
89、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间为多少立方米_____
A: 0B: 1500C: 5000D: 9000
参考答案: D 本题解释: 【解析】D。
90、1005×10061006-1006×10051005=? _____
A: 0 B: 100 C: 1000 D: 10000
参考答案: A 本题解释:【答案】A。解析:1005×10061006-1006×10051005=1006×1006×10001-1006×1005×10001=0。即正确答案为A。
91、有3个大人、2个小孩要一次同时过河,渡口有大船、中船、小船各一只,大船最多能载1个大人、2个小孩,中船最多能载大人、小孩各1人,小船最多能载大人1人,为了安全,小孩需大人陪同,则乘船的方式有多少种?_____
A: 6B: 12C: 18D: 24
参考答案: C 本题解释:C。如果两个小孩由一个大人陪着,有3种情况,乘船的方式有3×2=6种;如果两个小孩分别由两个大人陪着,有6种情况,乘船方式有6×2=12种。故一共有6+12=18种乘船方式。
92、校对一份书稿,编辑甲每天的工作效率等于编辑乙、丙每天工作效率之和,丙的工作效率相当于甲、乙每天工作效率之和的1/5。如果三人一起校对只需6天就可完成。现在如果让乙一人单独校对这份书稿,则需要_____天才能完成。
A: 20B: 16C: 24D: 18
参考答案: D 本题解释:D【解析】三人一起完成校对需要6天,那么三人每天的效率之和是1/6。因为甲每天的工作效率等于乙、丙每天工作效率之和,那么甲的工作效率为1/12,乙、丙的效率和也是1/12。设乙单独完成校对需要x天,那么根据题意可得到方程:1/12-(1/x)=(1/12+1/x)×(1/5)解得x=18,即乙单独完成校对需要18天,正确答案为D。
93、甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。
94、一条路上依次有A、B、C三个站点,加油站M恰好位于AC的中点,加油站N恰好位于BC的中点。若想知道M和N两个加油站之间的距离,只需要知道哪两点之间的距离?_____
A: CNB: BCC: AMD: AB
参考答案: D 本题解释:D。
95、在一次国际美食大赛中,中、法、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄国评委给出的平均分是92,那么中国评委和俄国评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:C 解析:设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2,又因为A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。
96、从某车站以加速度为1/18米/秒2始发的甲列车出发后9分钟,恰好有一列与甲列车同方向,并以50米/秒作匀速运行的乙车通过该车站,则乙车运行多少分钟与甲车距离为最近?_____
A: 9B: 3C: 5D: 6
参考答案: D 本题解释:D。当甲车速度小于乙车时,乙车逐渐缩短与甲车的距离;当甲车速度大于乙车时,两车之间距离拉大;仅当两车速度相同时,两车距离最小。根据Vt=Vo+at,可得50=1/18×9×60+1/18×t,求得t=360秒=6分钟。
97、小吴到商店买布。有两种同样长的布料,小吴买了第一种布料25米,买了第二种布料12米,小吴买完后,第一种布料剩下的长度是第二种布料剩下的长度的一半。那么这两种布料原来共有_____米。
A: 26B: 38C: 72D: 76
参考答案: D 本题解释:【答案】D。解析:设原来每种布料的长度为x米,则依题意得出方程:2(X-25)=X-12,解得x=38米,所以两种布料的总长为76米,因此,本题答案为D选项。
98、一艘船从A地行驶到B地需要5天,而该船从B地行驶到A地则需要7天。假设船速、水流速度不变,并具备漂流条件,那么船从A地漂流到B地需要_____天。
A: 40 B: 35 C: 12 D: 2
参考答案: B 本题解释:B。漂流瓶问题。漂流所需时间T=2t逆t顺/(t逆-t顺)(其中t逆和t顺分别表示漂流瓶逆流和顺流所需时间),代入可得:T=2×5×7/(7-5)=35(天)。
99、甲乙二人分别从相距若干公里的A、B两地同时出发相向而行,相遇后各自继续前进,甲又经1小时到达B地,乙又经4小时到达A地,甲走完全程用了几小时? _____
A: 2B: 3C: 4D: 6
参考答案: B 本题解释:B【解析】这个题目只要抓住固定不变的部分,不管时间怎么变速度比是不变的。假设相遇时用了a小时那么甲走了a小时的路程 乙需要4小时根据速度比=时间的反比则V甲:V乙=4 :a那么乙走了a小时的路程 甲走了1小时还是根据速度比=时间的反比则 V甲:V乙=a :1即得到 4:a=
A:1a=2所以答案是甲需要1+2=3小时走完全程。
100、甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。摩托车开始速度是50千米/小时,中途减速为40千米/小时。汽车速度是80千米/小时。汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时是在他出发后的多少小时?_____
A: 1B: 1(1/2)C: 1/3D: 2
参考答案: C 本题解释: C 解析: 汽车行驶100千米需100÷80=1(1/4)(小时),所以摩托车行驶了1(1/4)+1+1/6=2(5/12)(小时)。如果摩托车一直以40千米/小时的速度行驶,2(5/12)小时可行驶9623千米,与100千米相差10/3千米。所以一开始用50千米/小时的速度行驶了10/3÷(50-40)=1/3(小时)。故本题选C。