设为首页    加入收藏

事业单位考试省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江 更详细省市县级导航 事业单位招聘专用题库 事业单位考试历年真题 真题+讲义=免费

公共基础知识考点特训数学运算(2016年06月23日)(二)
2016-06-23 08:31:18 来源:91考试网 作者:www.91exam.org 【

1、下面显示的是某公司职位和每两个职位的月薪和。根据表格,主任的月薪是多少元?_____
A: 2600B: 2800C: 2900D: 3100
参考答案: C 本题解释:正确答案是C考点计算问题解析第一栏-第二栏+第三栏=会计+主管=3000-3200+4000=3800;第四栏+第五栏=会计+主管+2主任=5200+4400=9600;由上述两式可得,2主任=9600-3800=5800,也即主任月薪2900元。所以正确答案为C。



2、王家村西瓜大丰收后,全村男女老少分四个组品尝西瓜,且每组人数正好一样多,小伙子一人吃1个,姑娘两人吃1个,老人三人吃1个,小孩四人吃1个,一共吃了200个西瓜。则王家村品尝西瓜的共有_____。
A: 368人B: 384人C: 392人D: 412人
参考答案: B 本题解释:【答案】B。解析:解法一:设每组有x人,可列方程x+x/2+x/3+x/4=200,解得x=96,则品尝西瓜的人数有96×4=384人。因此,本题答案为B选项。解法二:利用整除关系。由题意,全村人数必须能被3和8整除,只有B满足。因此,本题答案为B选项。



3、(2008陕西,第10题)在一条公路的两边植树,每隔3米种一棵树,从公路的东头种到西头还剩5棵树苗,如果改为2.5米种一棵,还缺树苗115棵,则这条公路长多少米?_____
A: 700B: 800C: 900D: 600
参考答案: C 本题解释:参考答案:C题目详解:依题意:设公路长为,一共有棵树根据植树公式:所以,选C。考查点:数量关系>数学运算>盈亏问题



4、某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?_____
A: 50%B: 40%C: 30%D: 20%
参考答案: A 本题解释:正确答案是A考点经济利润问题解析设定价为100元,当按定价的80%出售即80元,则商品进价为80÷(1+20%)=800/12;当按定价出售时即100元,则商品利润比重为100÷800/12-1=3/2-1=0.5,因此定价时期望的利润率是50%,故正确答案为A。



5、有甲、乙两根水管,分别同时给A、B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是 。经过 小时,A、B两池中注入的水之和恰好是一池。这时,甲管注水速度提高 ,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?_____
A: B: C: 1D:
参考答案: A 本题解释:参考答案:A题目详解:根据题意,设水池容积为,甲管每小时注水,乙管每小时注水。则,得到;甲已经灌了,还剩下,此时甲管注水速度提高,甲每小时注水速度为,因此甲注满水池还需要:时;乙最开始灌了,还剩,保持原速度的话当甲灌满水池时乙灌了,还差,乙还需要小时才可注满B池。因此,选A。考查点:数量关系>数学运算>工程问题>合作完工问题



6、一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,停车场有红色夏利轿车多少辆?_____
A: 14B: 21C: 15D: 22
参考答案: B 本题解释:【解析】B。红色夏利=总数-红色非夏利-非红色非夏利-非红色夏利,红色非夏利=红色-红色夏利,非红色夏利=夏利-红色夏利,设则红色夏利=50-(35-红色夏利)-8-(28-红色夏利),得红色夏利=21。



7、同时扔出A、B两颗骰子(其六个面上的数字都为1,2,3,4,5,6),问两个骰子出现的数字的积为偶数的情形有几种_____。
A: 24千米B: 25千米C: 28千米D: 30千米
参考答案: A 本题解释:正确答案是B考点行程问题解析甲从A地到B地需要100÷10=10小时,为了使乙不比甲晚到B地,乙至多用时10-6=4小时,则乙的速度至少为100÷4=25千米/小时。故正确答案为B。



8、有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整B: 11点20分C: 11点40分D: 12点整
参考答案: B 本题解释:正确答案是B考点周期问题解析三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。标签最小公倍数



9、有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有_____块。
A: 180B: 196C: 210D: 220
参考答案: D 本题解释:正确答案是D考点数列问题解析由瓷砖总数为400块,可知该正方形边长为20块瓷砖,每往里一层,边长减少2块瓷砖,由此可知每往里一层绿色瓷砖,边长减少4块瓷砖。因此绿色瓷砖共5层,最外层一圈为76块砖,最里一层一圈为12块砖,总数为(76+12)÷2×5=220块。故正确答案为D。注:等差数列求和公式,和=(首项+末项)×项数÷2标签公式应用



10、小张到文具店采购办公用品,买了红黑两种笔共66支。红笔定价为5元,黑笔的定价为9元,由于买的数量较多,商店给与优惠,红笔打八五折,黑笔打八折,最后支付的金额比核定价少18%,那么他买了红笔_____。
A: 36支B: 34支C: 32支D: 30支
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析解析1:设买红笔A支,黑笔B支,由题意得:A+B=66······(1)(5A+9B)×0.82=5A×0.85+9B×0.8······(2)由(2)式得B=5/6A,则A=66×[6/(6+5)]=36。解析2:红笔打八五折,黑笔打八折,总价打八二折,相当于红笔和黑笔都打八二折,设红笔A支,黑笔B支,则(0.85-0.82)×5A=(0.82-0.80)×9B,得B=5/6A,则A=66×[6/(6+5)]=36。故正确答案为A。



11、(101+103+…+199)-(90+92+…+188)=_____。
A: 100 B: 199 C: 550 D: 990
参考答案: C 本题解释:C[解析]提取公因式法。101-90=11,103-92=11,……,199-188=11,总计有50个这样的算式,所以50×11=550,选择C。



12、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: 1400C: 1120D: 1050
参考答案: D 本题解释:【答案】D。解析:主唱分25%,其余5人分75%,所以每人分15%,所以7000×l5%=1050元。



13、2011×201+201100-201.1×2910的值为_____。
A: 20110B: 21010C: 21100D: 21110
参考答案: A 本题解释:正确答案是A考点计算问题解析原式=2011×201+2011×100-2011×291=2011×(201+100-291)=2011×10=20110。秒杀技原式中每一项都含有2011,因此结果必能被2011整除,只有A符合。标签数字特性



14、李老师带领一班学生去种树,学生恰好被平分为4个小组,总共种树667棵,如果师生每人种树的棵数一样多,那么这个班共有学生多少人?_____
A: 28B: 36C: 22D: 24
参考答案: A 本题解释:参考答案:A题目详解:。这个班师生每人种树的棵数只能是667的约数:1、23、29、667。当每人种23棵树时,全班人数应是,而28恰好是4的倍数,符合题目要求。以此方法计算,每人种1或29或667棵树时,所得人数不能被4整除,故不符合题目要求。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分



15、某项工程由A、B、C三个工程队负责施工,他们将工程总量等额分成了三份同时开始施工。当A队完成了自己任务的90%,B队完成了自己任务的一半,C队完成了B队已完成任务量的80%,此时A队派出2/3的人力加入C队工作。问A队和C队都完成任务时,B队完成了其自身任务的_____。
A: 80%B: 90%C: 60%D: 100%
参考答案: A 本题解释:正确答案是A考点工程问题解析相同时间内,A、B、C三队分别完成了自己的任务的90%、50%和50%×80%=40%,即他们的工作量之比为9:5:4,故他们的工作效率之比为9:5:4。不妨设他们的效率分别为9、5、4,A队派出2/3的人力加入C队后,工作效率减少了9×2/3=6,变为9-6=3;C队的工作效率变为4+6=10,A队剩10%的任务,完成还需10%÷3=3.33%的时间;C队还剩下60%的任务,需要60%÷10=6%的时间,可见C队后完成任务,此时B队又完成了6%×5=30%的任务,共完成了50%+30%=80%,故正确答案为A。标签赋值思想



16、(2004上海,第18题)参加会议的人两两都彼此握手,有人统计共握手36次,到会共有多少人?_____
A: 9B: 10C: 11D: 12
参考答案: A 本题解释:参考答案:A题目详解:本题等价于从个人中挑出2个成为一个组合;即:;解得;考查点:数量关系>数学运算>排列组合问题>常规排列组合问题



17、:_____
A: 2B: 4C: 6D: 8
参考答案: C 本题解释:



18、某市财政局下设若干处室,在局机关中不是宣 传处的有206人,不是会计处的有177人,已知宣传处与会计处共有41人,问该市财政局共有多少人?_____
A: 218 B: 247C: 198D: 212
参考答案: D 本题解释: 【解析】由题意有:人。所以选D。



19、小明买了1支钢笔.所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元。小明带了多少元钱?_____
A: 14.6B: 16C: 15D: 13.4
参考答案: D 本题解释:参考答案题目详解:解法一:买本子前剩下元,根据题意,设总数是元,则:钢笔花了:元,圆珠笔花了元,那么,解得,元。所以,选D。解法二:还原问题的思考方法来解答。买圆珠笔后余下元,买钢笔后余下元,小明带了元。所以,选D。考查点:数量关系>数学运算>和差倍比问题>和差倍问题



20、有面积为1平方米、4平方米、9平方米、16平方米的正方形地毯各10块,现有面积为25平方米的正方形房间需用以上地毯来铺设,要求地毯互不重叠且而好铺满。问最少需几块地毯? _____
A: 6块B: 8块C: 10块D: 12块
参考答案: B 本题解释:最少需地毯块数,即尽量用大面积的地毯,25=16+9×1 ——10块25=9+3×4+4×1——8块25=4×4+9×1 ——13块,所以最小块数为8.具体是一块9平方米,三块4平方米。四块1平方米,选B。



21、一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?_____
A: 10米/秒B: 15米/秒C: 25米/秒D: 30米/秒
参考答案: A 本题解释:【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。



22、一串数排列成一行,它们的规律是这样的:前两个数都是1,从第三个数开始,每个数是它前两个数的和,也就是:1,1,2,3,5,8,13,21,34,…问:这串数的前100个数中有多少个偶数?_____
A: 33B: 32C: 50D: 39
参考答案: A 本题解释:参考答案:A题目详解:依题意:“1,1,2,3,5,8”根据“奇偶相加法则”:这个数列以“奇、奇、偶”为周期,循环出现;周期;前99个数中有33个偶数:而第100个数是奇数。共33个偶数。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性



23、某市居民生活用电每月标准用电量的基本价格为每度0.60元,若每日用电量超过标准用电量,超出部分按基本价格的80%收费,某户九月份用电100度,共交电费57.6元,则该市每月标准用电量为_____。
A: 60度B: 70度C: 80度D: 90度
参考答案: C 本题解释:正确答案是C考点鸡兔同笼问题解析解析1:假定100度电全部是标准用电量范围内,则应交电费60元,实际交电费57.6元,少交2.4元。注意到每超过标准用电量1度电,少交费0.12元,因此超过标准用电量的部分为2.4÷0.12=20(度),因此标准用电量为80度。故正确答案为C。解析2:设每月标准电量为y度,超出标准的电量为(100-y)度,则由题意标准电量所产生的电费为0.6y,而超出标准电量部分的电量单价为0.6×0.8=0.48元/度,因此所产生的电费为0.48×(100-y),所以0.6y+0.48×(100-y)=57.6,解得y=80,故正确答案为C。



24、从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?_____
A: 240B: 310 C: 720 D: 1080
参考答案: B 本题解释: 答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。



25、一副扑克牌有52张,最上面一张是红桃A。如果每次把最上面的10张移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃A会出现在最上面?_____
A: 27B: 26C: 25D: 24
参考答案: B 本题解释:正确答案是B考点倍数约数问题解析每次移动扑克牌张数为10,因此移动的扑克牌总数必然是10的倍数;又红桃A从再最上面再回到最上面,则移动的扑克牌总数必然是52的倍数。10与52的最小公倍数是260,也即移动扑克牌数达到260后红桃A再次出现在最上面。移动次数为260÷10=26次,故正确答案为B。标签最小公倍数



26、高速公路上行驶的汽车A的速度是每小时100公里,汽车B的速度是每小时120公里,此刻汽车A在汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶。那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?_____
A: 2小时B: 3小时10分C: 3小时50分D: 4小时10分
参考答案: B 本题解释:正确答案是B考点行程问题解析汽车A在加油的10分钟时间内汽车B可行驶路程120×1/6=20公里,A、B间剩余80-20=60公里是A、B追及的过程,用时60÷(120-100)=3小时,因此汽车B追上A共用时3小时10分钟,故正确答案为B。



27、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师老师带领,刚好能够分配完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心剩下学员多少人? _____
A: 36 B: 37 C: 39 D: 41
参考答案: D 本题解释:【答案】D 【解析】假设原来每位钢琴教师所带学员为a人,每位拉丁舞教师带学员b人,则有76=5a+6b,因为76和6b为偶数,所以5a也为偶数,而a为质数,则只能a=2,所以b=11。因此目前培训中心剩4×2+3×11=41名学员。



28、如下图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?_____
A: 15B: 16C: 14D: 18
参考答案: B 本题解释:正确答案是B考点容斥原理问题解析直接应用三集合容斥原理公式,可知:290=64+180+160-24-70-36+X,则290=(64-24)+(180+160)-70-36+X,即290=40+(180+160)-70-36+X,X=16,故正确答案为B。标签三集合容斥原理公式尾数法



29、福州大洋百货为了庆祝春节,特举行让利百万大酬宾促销活动,在二楼打出了买300送60元的优惠活动。其中某柜台各以3000元卖出两件商品,其中盈亏均为20%,则该柜台应_____。
A: 赚500元B: 亏300元C: 持平D: 亏250元
参考答案: D 本题解释:正确答案是D考点经济利润问题解析赚钱商品的进价为3000÷(1+20%)=2500,亏钱商品的进价为3000÷(1-20%)=3750,故3750+2500-3000×2=250,即以3000元卖出的两件商品亏了250元。故正确答案为D。



30、一艘轮船在两码头之间航行。如果顺水航行需8小时,逆水航行需11小时。已知水速为每小时3千米,那么这艘轮船每小时行驶多少千米,两码头之间的距离是多少千米_____
A: 19,176B: 18,184C: 19,190D: 18,168
参考答案: A 本题解释:【解析】A。顺水航行8小时比逆水航行8小时多航行了(千米),这是逆水航行11-8=3(小时)航行的路程,所以逆水速度是(千米/小时),轮船的速度为16+3=19(千米/小时),两,码头之间的距离为(千米)。



31、人们将1/10表示为1月10日,也有人将1/10表示为10月1日,这样一年中就有不少混淆不清的日期了,当然,8/15和15/8只能表示为8月15日,那么一年中像这样不会搞错的日期最多会有多少天?_____
A: 221B: 222C: 216D: 144
参考答案: B 本题解释:正确答案是B考点多位数问题解析由题意可分析出,会搞错的日期有这样的特征:(1~12)/(1~12),共有12×12=144,当为闰年366天时,不会搞错的日期最多:366-144=222,故正确答案为B。备注:事实上,本题没有正确选项,因为在144种中,像1/1、2/2、······、12/12这些共12种情况,也是不会搞错的日期,故不会搞错的日期最多:222+12=234,正确答案应该是234。标签构造调整



32、今年某高校数学系毕业生为60名,其中70%是男生,男生中有1/3选择继续攻读硕士学位,女生选择攻读硕士学位的人数比例是男生选择攻读硕士学位人数比例的一半,那么该系选择攻读硕士学位的毕业生共有_____。
A: 15位B: 19位C: 17位D: 21位
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析根据题意,毕业生中有30%是女生,攻读硕士学位的占1/6,因此该系攻读硕士学位的毕业生共有60×70%×1/3+60×30%×1/6=17位,故正确答案为C。



33、某商场促销,晚上八点以后全场商品在原来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋的原价为多少元钱? _____
A: 550B: 600C: 650D: 700
参考答案: B 本题解释:【答案】B。解析:若付款时不满400元,则原价为384.5÷95%÷85%元,结果为非整数,没有选项符合;若付款时满400元,则原价为(384.5+100)÷95%÷85%=600元,选择B。



34、有101位乒乓球运动员在进行冠军争夺赛。通过比赛,将从中产生一名冠军。这次比赛实行捉对淘汰制。在一轮比赛全部结束后,失败者失去继续比赛的资格,而胜利者再次抽签,参加下一轮的比赛。问一共要进行多少场比赛,才能最终产生冠军?_____
A: 32B: 63C: 100D: 101
参考答案: C 本题解释:参考答案:C题目详解:依题意:其实可以看成是一场比赛淘汰一个人;要得出冠军就要淘汰掉个人;淘汰100个人即要进行100场比赛;所以,选C。考查点:数量关系>数学运算>排列组合问题>比赛问题>淘汰赛



35、有面值为8分、1角和2角的三种纪念邮票若干张,总价值为1元2角2分,则邮票至少有_____。
A: 7张B: 8张C: 9张D: 10张
参考答案: C 本题解释:参考答案:C题目详解:要使邮票最少,则要尽量多的使用大面额邮票:2角的要多用;并且要达到总价值1元2角2分:2角的邮票要使用4张;1角的邮票要使用1张;8分的邮票要4张;即:1元2角2分;所以至少要用张。所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分



36、某市为合理用电,鼓励各用户安装峰谷电表,市原电价每度0.53元,改新表后,每晚10点至次日早8点为低谷,每度收0.28元,其余时间为高峰期,每度0.56元,为改装新电表每个用户须收取100元改装费,假定某用户每月用200度电,两个不同时段用电量各为100度,那么改装电表12个月后,该用户可节约_____元。
A: 161B: 162C: 163D: 164
参考答案: D 本题解释:正确答案是D考点经济利润问题解析电表改装之前该用户每年的用电费用为200×0.53×12=1272元;改装电表之后,该用户这一年的用电费用加上改装费用共(0.28×100+0.56×100)×12+100=1108元,该用户改装电表前后可节约1272-1108=164元。故正确答案为D。



37、某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为_____。
A: 7人B: 8人C: 5人D: 6人
参考答案: A 本题解释:正确答案是A考点容斥原理问题解析三集合容斥原理公式,42=22+16+25-8-6-x+0,根据尾数法可知x=7。故答案为A。标签三集合容斥原理公式尾数法



38、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?_____
A: 7B: 9C: 10D: 12
参考答案: C 本题解释:正确答案是C考点排列组合问题解析因此正确答案为C。



39、(2002浙江)如图所示,直线SA垂直于正方形ABCD,AC与BD相交于O,AB=cm,SC=5cm,则点S到直线BC的距离是_____。
A: B: C: D:
参考答案: C 本题解释:参考答案:C题目详解:根据三垂线定理,在上图中,SA垂直于正方形ABCD,AB⊥BC,则CB⊥BC所以,题目所求的点S到直线BC的距离是SB,再根据勾股定理,可知:。所以,选C。考查点:数量关系>数学运算>几何问题>立体几何问题>与线、角相关问题(立体)



40、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:正确答案是A考点经济利润问题解析假设每册书利润为10元,去年销量为10册,则今年每册书的利润为8元,销量为17册。因此去年的总利润为10×10=100元,今年的总利润为8×17=136元,因此今年销售该畅销书的总利润比去年增加了36%。正确答案为A。



41、已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有_____。
A: 10B: 11C: 12D: 9
参考答案: B 本题解释:【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。



42、某公司招聘甲、乙两种职位的人员共90人,甲、乙两种职位人员每月的工资分别为1500元和2500元,若甲职位的工资总支出是乙职位的40%,则乙职位招聘人数比甲职位多:_____
A: 24人B: 20人C: 18人D: 15人
参考答案: C 本题解释:【答案】C。解析:设甲职位有x人,则Z乙职位有(90-x)人。依题意有l500x=2500×(90-x)×40%,x=36人。因此乙职位有90-36=54人,比甲职位多54-36=18人。快速突破甲、乙职位的人均工资之比为1500:2500=3:5;甲职位的工资总支出是乙职位的40%,则甲、乙职位的总工资支出之比为40%:1=2:5,所以甲、乙职位的招聘人位之比为2/3:5/5=2:3,甲、乙共招聘90人,则乙职位招聘人数比甲职位多90×(3-2)/(3+2)=18人。



43、建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?_____
A: 20人B: 30人C: 40人D: 50人
参考答案: B 本题解释:【答案】B。解析:采取逆向思维法。不喜欢乒乓的1600-1180=420,不喜欢羽毛球的1600-1360=240,不喜欢篮球的1600-1250=350,不喜欢足球的1600-1040=560,要使四项运动都喜欢的人数最少,那么不喜欢的人数就要最多那么都尽量不相交,从而达到最多:420+240+350+560=1570人,所以喜欢的最少的为1600-1570=30人,故正确答案为B。



44、16支球队分两组,每组打单循环赛,共需打_____场比赛。
A: 16B: 56C: 64D: 120
参考答案: B 本题解释:正确答案是B考点统筹规划问题解析标签公式应用



45、有34个偶数的平均数,如果保留一位小数点是15.9,如果保留两位小数,得数是_____?
A: 15.85B: 15.86C: 15.87D: 15.88
参考答案: D 本题解释:参考答案题目详解:根据题意,34个数的总和应该能够被4整除,所以总和为:540考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质



46、



47、甲单位义务植树一公里,乙单位紧靠甲单位又植树一公里,如果按10米植一棵树的话,两单位共植树多少棵?_____
A: 199B: 200C: 201D: 202
参考答案: C 本题解释:参考答案:C题目详解:此题要求两单位的植树总数,则分甲单位植树的棵数和乙单位植树的棵数。甲单位在一公里内植树,则两端均可植一棵树,带入两端均植树问题的公式:棵数=总长÷间距+1=1000÷10+1=101棵树;乙单位紧靠着甲单位植树,则有一端不需要植树,带入只有一端植树问题的公式:棵数=总长÷间距=1000÷10=100棵树。因此,甲、乙共植树:101+100=201棵。所以,选C。考查点:数量关系>数学运算>特殊情境问题>植树问题>两端均植树



48、甲、乙两港相距720千米,轮船往返两港需要35小时,逆流航行比顺流航行多花5小时;帆船在静水中每小时行驶24千米,问帆船往返两港要多少小时?_____
A: 58小时B: 60小时C: 64小时D: 66小时
参考答案: C 本题解释:正确答案是C考点行程问题解析设水流速度为x千米/小时,轮船速度为y千米/小时,根据题意可知,逆流轮船用了20小时,顺流轮船用了15小时,因此有:20(y-x)=720,15(y+x)=720,联立解得x=6,所以帆船往返两港要的时间为:720/(24+6)+720/(24-6)=24+40=64,故选择C选项。标签顺水漂流模型



49、女儿2013年时的年龄是母亲年龄的1/4,40年后女儿的年龄是母亲年龄的2/3。问当女儿年龄是母亲年龄的1/2时是公元多少年?_____
A: 2021 B: 2022 C: 2026 D: 2029
参考答案: D 本题解释:【答案】D。



50、小王从家开车上班,其实行驶10分钟后发生了故障,小王从后备箱中取出自行车继续赶路,由于自行车的车速只有汽车的3/5,小王比预计时间晚了20分钟到达单位,如果之前汽车再多行驶6公里,他就能少迟到10分钟,从小王家到单位的距离是_____公里。
A: 12B: 14C: 15D: 16
参考答案: D 本题解释:正确答案是D考点行程问题解析由题意可知,汽车和自行车的速度之比为5:3,因此相同路程下汽车和自行车的用时之比为3:5。迟到20分钟,则余下的路程汽车30分钟,自行车50分钟,所以总路程开车需40分钟;迟到10分钟,则余下的路程汽车15分钟,自行车25分钟,后面一种情况比前面一种汽车多开了15分钟,行驶了6公里,因此全程的距离为6÷15×40=16公里,故正确答案为D。标签比例转化



51、某市居民用电实行分段式收费,以人为单位设定了相同的基准用电度数,家庭人均用电量超过基准用电度数的部分按照基准电费的两倍收取电费。某月,A家庭5口人用电250度,电费175元;B家庭3口人用电320度,电费275元。该市居民每人的基准用电为_____度。
A: 50B: 35C: 30D: 25
参考答案: C 本题解释:正确答案是C考点分段计算问题解析设每人基准用电为m,基准电费为n,则可得方程组如下:n×5m+2n×(250-5m)=175,n×3m+2n×(320-3m)=275,联立解得m=30。故正确答案为C。



52、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级 B: 100级 C: 120级 D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。



53、某大学某班学生总数为32人。在第一次考试中有26人及格,在第二次考试中有24人及格。若两次考试中都没有及格的有4人,那么两次考试都及格的人数是_____。
A: 22B: 18C: 28D: 26
参考答案: A 本题解释:正确答案是A考点容斥原理问题解析由题意,两次考试中至少有一次及格的人数为32-4=28(人),设两次考试都及格的人数是n,则有:28=26﹢24-n,解得n=22。故正确答案为A。注:两集合容斥原理公式为A∪B=A+B-A∩B。标签两集合容斥原理公式



54、一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数是多少?_____
A: 19B: 99C: 199D: 299
参考答案: D 本题解释:参考答案:D题目详解:此题采用层层推进法:一个数除以5余4:那么用4加上5的倍数,直至除以8余3为止;可以得到,满足条件;再用19加上5和8的最小公倍数40,直至除以11余2:;因此满足条件最小的自然数是299。所以,选D.考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理



55、一圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米.A等于几米?_____
A: 3.6B: 2.8C: 6.4D: 9.2
参考答案: A 本题解释:参考答案:A题目详解:列方程:所以,选A。考查点:数量关系>数学运算>盈亏问题



56、_____
A: 195200B: 196000C: 210240D: 198000
参考答案: C 本题解释:参考答案:C题目详解:原式=6802-4642-256×144=(680-464)×(680+464)-256×144(平方差公式)=216×1144-256×144=216×(1000+144)-256×144(分配律)=216×1000+216×144-256×144=216000+144×(216-256)=216000-144×40=216000-5760=210240考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题



57、六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案】B。解析:开始时是1,1,1,1,1,1,第二次变为0,0,3,1,1,1,第三次变为2,0,2,0,1,1,第三次变为4,0,1,0,0,1,第四次变为6,0,0,0,0,0。



58、一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需_____。
A: 10天B: 12天C: 8天D: 9天
参考答案: A 本题解释:正确答案是A考点工程问题解析赋值总工程量为90,则甲效率为3,甲乙合作效率为5,故乙的效率为2;而乙丙合作效率为6,故丙的效率为4。于是甲乙丙效率之和为9,故三人合作该工程需要10天。因此答案选A。



59、如图所示,在3×3方格内填入恰当的数后,可使每行、每列以及两条对角线上的三数的和都相等。问方格内的x的值是多少?_____
A: 2B: 9C: 14D: 27
参考答案: A 本题解释:正确答案是A考点趣味数学问题解析假定中间数字为a,则a+6=8+3,则a=5。而3+a=x+6,解得x=2,故正确答案为A。



60、甲乙两人计划从A地步行去B地,乙早上7:00出发,匀速步行前往,甲因事耽搁,9:00才出发。为了追上乙,甲决定跑步前进,跑步的速度是乙步行速度的2.5倍,但每跑半小时都需要休息半小时,那么甲什么时候才能追上乙?_____
A: 10:20B: 12:10C: 14:30D: 16:10
参考答案: C 本题解释:正确答案是C考点行程问题解析解析1:设乙步行速度为1,则甲跑步速度为2.5,则9:00时甲乙两人之间的距离为2,5小时后,两人相距2-(2.5×0.5-1)×5=0.75,此时,再经过半小时甲刚好追上乙,即共用了5个半小时,在14:30追上,故正确答案为C。解析2:标签直接代入



61、有甲、乙两只盒子,甲盒装有2个黑球、4个红球,乙盒装有4个黑球、3个红球,若从甲、乙两盒中各任取两球交换后,甲盒中恰有4个红球的概率为多少?_____
A: B: C: D:
参考答案: D 本题解释:参考答案题目详解:事件“甲盒中恰有4个红球”发生:说明从甲盒任取两球的结果与从乙盒任取两球的结果相同;甲盒任取两个球:有种情形,其中“2黑”的情形有种,“1黑1红”的情形有种,“2红”的情形有种;乙盒任取两个球:有种情形,其中“2黑”的情形有种,“1黑1红”的情形有种,“2红”的情形有种。所以,“2黑”交换:种;“1黑1红”交换:种;“2红”交换:种;因此,甲盒中恰有4个红球的概率是:;所以,选D。考查点:数量关系>数学运算>概率问题>条件概率



62、五人排队甲在乙前面的排法有几种?_____
A: 60B: 120C: 150D: 180
参考答案: A 本题解释: 答案【A】



63、一袋白糖,第一次用去0.3斤,第二次用去余下的3/4,这时袋内还有白糖0.2斤,该袋糖原有多少斤?_____
A: 1.1B: 0.5C: 1.5D: 2
参考答案: A 本题解释: A 【解析】0.2÷(1-3/4)+0.3=1.1。



64、在一次有四个局参加的工作会议中,土地局与财政局参加的人数比为5∶4,国税局与地税局参加的人数比为25∶9,土地局与地税局参加人数的比为10∶3,如果国税局有50人参加,土地局有多少人参加?_____
A: 25B: 48C: 60 D: 63
参考答案: C 本题解释: 【解析】根据以上比例关系,可得出土地局︰地税局︰国税局=30︰9︰25,所以土地局有60人参加。所以选C。



65、真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是_____。
A: 6B: 5C: 7D: 8
参考答案: A 本题解释:【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。



66、某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口_____。
A: 30万B: 31.2万C: 40万D: 41.6万
参考答案: A 本题解释:【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。



67、某次抽奖活动在三个箱子中均放有红、黄、一绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑、白除外)的得三等奖。问不中奖的概率是多少?_____
A: 在 0~25%之间B: 在25~50%之间C: 在50~75%之间D: 在75~100%之间
参考答案: C 本题解释:C。



68、一个游泳池,甲管注满水需6小时,甲、乙两管同时注水,注满要4小时。如果只用乙管注水,那么注满水需_____小时。
A: 14B: 12C: 10D: 8
参考答案: B 本题解释:正确答案是B考点工程问题解析解析1:该题为工程问题,直接赋值求解,甲单独完成注水,时间为6小时,甲和乙共同注水时间是4小时,取最小公倍数为12作为总工程量。则甲和乙一起注水4小时,甲完成的工作量12×4/6=8,乙完成的工作量为12-8=4份,乙每小时完成1份工作量,单独注水需要12个小时完成12份工作量。故正确答案为B。解析2:该问题为工程问题,可以比例转化求解。赋值工程量为6,甲单独注水时间为6,甲乙同注水4小时,甲完成的工程量是6×4/6=4,则乙完成的工程量是6-4=2,则甲乙效率比为2:1,单独注水时间比为1:2。则乙单独注水需要12小时。标签比例转化



69、某餐厅开展“每消费50元送饮料一瓶”的活动,某办公室的职员一起去该餐厅吃饭,每人花费18元,餐厅赠送了7瓶饮料。问去吃饭的人数可能是多少?_____
A: 17B: 19C: 21D: 23
参考答案: C 本题解释:C。送7瓶饮料说明总消费金额大于350小于400,代人选项发现只有21人时是21×18=378元符合条件。



70、(2007北京社招,第25题)_____。
A: 19000B: 19200C: 19400D: 19600
参考答案: D 本题解释:参考答案题目详解:应用凑整法:原式=,所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>速算与技巧>凑整法



71、有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。那么,这四个自然数的和是_____。
A: 216B: 108C: 314D: 348
参考答案: C 本题解释:正确答案是C考点余数与同余问题解析由题意可知A=5B+5=6C+6=7D+7,则A为5、6、7的公倍数;5、6、7的最小公倍数为210,根据和不超过400,可知A=210,则可得B=210÷5-1=41、C=210÷6-1=34、D=210÷7-1=29,A+B+C+D=210+41+34+29=314,故正确答案为C。



72、在浓度为 的酒精中加入10千克水,浓度变为 ,再加入L千克纯酒精,浓度变为 ,则L为多少千克?_____
A: 8B: 11.7C: 14.6D: 16.4
参考答案: B 本题解释:参考答案:B题目详解:应用十字交叉法:根据题意;第一次混合相当于浓度为的溶液混合:所以75%的酒精与水的比例为;水10千克,的酒精8.75千克。混合后共18.75千克。第二次混合,相当于浓度为的溶液混合:所以的酒精与纯酒精的比例为,即18.75:千克;所以,选B。考查点:数量关系>数学运算>浓度问题>不同溶液混合



73、马尾“胜利”号货轮在3天内共航行了150海里,请问货轮平均每天约航行多少千米?_____
A: 92.6千米B: 78.4千米C: 120.6千米D: 140.5千米
参考答案: A 本题解释:正确答案是A考点行程问题解析本题应注意单位的换算,1海里=1.852千米,由题意知货船平均每天航行1.852×150÷3=92.6千米。故正确答案为A。



74、甲、乙两人进行乒乓球比赛,比赛采取三局两胜制,无论哪一方先胜两局则比赛结束。甲每局获胜的概率为2/3,乙每局获胜的概率为1/3。问甲最后取胜的概率是多少?_____
A: AB: BC: CD: D
参考答案: A



75、龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米。乌龟不停地跑,但兔子却边跑边玩,它先跑一分钟,然后玩十五分钟,又跑二分钟,然后玩十五分钟,又跑三分钟,然后玩十五分钟,……,那么先到达终点的比后到达终点的快多少分钟?_____
A: 104分钟B: 90.6分钟C: 15.6分钟D: 13.4分钟
参考答案: D 本题解释:正确答案是D考点趣味数学问题解析乌龟到达终点所需时间为:5.2÷3×60=104分钟,兔子如果不休息,则需要时间:5.2÷20×60=15.6分钟。而实际兔子休息的规律为每跑1、2、3、······分钟后,休息15分钟,因为15.6=1+2+3+4+5+0.6,所以兔子总共休息的时间为:15×5=75分钟,即兔子跑到终点所需时间为:15.6+75=90.6分钟,因此兔子到达终点比乌龟快:104-90.6=13.4分钟,故正确答案为D。



76、(2008四川,第11题)一架飞机飞行在A、B两个城市之间,当风速为28千米/小时,顺风飞行需两小时30分钟,逆风飞行需2小时50分钟。问飞机飞行的速度是多少千米/时?_____
A: 338B: 410C: 448D: 896
参考答案: C 本题解释:参考答案:.C题目详解:假设A、B两地距离为,飞机飞行速度为,则:顺风飞行速度为:千米/小时;逆风飞行速度为:千米/小时;则有:所以,选C。考查点:数量关系>数学运算>行程问题>行船问题>基本行船问题



77、有一个数,除以3余数是2,除以4余数是1。问这个数除以12余数是几?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B【解析】设这个数除以12,余数是a。那么a除以3,余数是2;a除以4,余数是1。而在0,1,2,…,11中,符合这样条件的a只有5,故这个数除以12余5。



78、一个长方体形状的盒子长、宽、高分别为20厘米、8厘米和2厘米,现在要用一张纸将其六个面完全包裹起来,要求从纸上剪下的部分不得用作贴补,请问这张纸的大小可能是下列哪一个?_____
A: 长25厘米,宽17厘米B: 长26厘米,宽14厘米C: 长24厘米,宽21厘米D: 长24厘米,宽14厘米
参考答案: C 本题解释:正确答案是C考点几何问题解析由题意知,盒子的表面为:2×(20×8+20×2+2×8)=432(平方厘米),纸的面积必须比盒子的表面积大才能完全包裹盒子。计算四个选项中长和宽相乘产生的面积值,A项为25×17=425(平方厘米),B项为26×14=364(平方厘米),C项为24×21>480>432(平方厘米),D项为24×14<26×14=364(平方厘米),仅C项的面积值大于432。故正确答案为C。



79、1.31×12.5×0.15×16的值是_____。
A: 39.3B: 40.3C: 26.2D: 26.31
参考答案: A 本题解释:A【解析】本式可写为1.31×12.5×4×0.15×4。



80、定义:①群体互补效应:由不同年龄、专业、智能水平、气质类型的人才有机地组成一个结构合理的人才群体,达到知识互用、能力互补,使只有专才的个体,变成多能的人才群。②群体协调效应:在结构合理的人才群体中,逐步形成了群体每个成员共同遵守的良好的道德规范和传统作风,以此调节和协调群体中个体与个体、个体与群体、群众与社会的关系,并影响和控制整个群体,使群体的力量和功能得到维护和加强。③群体感应效应:在结构合理的人才群体中,人才之间在目标上志同道合,在学风上互相感染,在学术上互相影响,同心同德,紧密团结,创新意识和创造思维不断激化和强化,形成对人才创造特别有利的“微型气候”。典型例证:(1)某大学有效整合资源,在校内外组织多方面人才,团结协作,集体攻关。(2)正因为好大学有优良的校风和传统,所以人人才都想上好大学。(3)小李做事低调,从不张扬。上述典型例证与定义存在对应关系的数目有_____。
A: 0个B: 1个C: 2个D: 3个
参考答案: C 本题解释:【答案】C。解析:第一步:抓住每个定义中的关键词群体互补效应:关键词强调“不同年龄、专业、智能水平、气质类型的人才”、“知识互用、能力互补”。群体协调效应:关键词强调“群体每个成员共同遵守”、“调节和协调”。群体感应效应:关键词强调“目标上志同道合,在学风上互相感染,在学术上互相影响”。第二步:逐一分析例证与定义间的关系例证(1)大学组织了多方面的人才,形成群体互补效应,对应定义①,例证(2)好大学因为有优良的校风和传统而受欢迎,属于群体感应效应,对应定义③;例证(3)讲的是小李的个体行为,与上面的定义均不相符。例证与定义存在对应关系的数目有2个,故正确答案为C。



81、一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:B[解析]设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1: (1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力桨静水速度=5+1=6,比例为6:2=3:1



82、甲、乙、丙三人沿着200米的环形跑道跑步,甲跑完一圈要1分30秒,乙跑完一圈要1分20秒,丙跑完一圈要1分12秒,三人同时、同向、同地起跑,最少经过多少时间又在同一起跑线上相遇?_____
A: 10分B: 6分C: 24分D: 12分
参考答案: D 本题解释:参考答案题目详解:三人跑完一圈的时间比为:;三人跑完一圈的速度比为:;化为最简整数比为:8:9:10,即三人分别跑了8、9、10圈后又在同一起跑线上相遇,时间为:分钟。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数



83、某校下午2点整派车去某厂接劳模作报告,往返须1小时。该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点40分到达。问汽车的速度是劳模的步行速度的几倍?_____
A: 4 B: 6 C: 7 D: 8
参考答案: D 本题解释:【解析】本题要画图辅助,假设全程距离为1,汽车来回的时间为1小时,所以,其速度为1,汽车运行时间为2/3小时,所以汽车跑的路程为2/3,人走的距离为剩下1/3路程的一半,即1/6,步行的时间为1小时20分,所以步行的速度是1/6÷(1+1/3)=1/8,所以汽车的速度是劳模的8倍。选D.



84、对任意实数a、b、c定义运算,若1*x*2=2,则x=_____。
A: 2B: -2D: ±1
参考答案: D 本题解释:参考答案题目详解:根据题意,将a=1,b=x,c=2代入新的运算规则,得:,得到x=±1。因此,选D考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题



85、小明和小强从400米环形跑道的同一点出发,背向而行。当他们第一次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向。小明每秒跑3米,小强每秒跑5米,则在两人第30次相遇时,小明共跑了多少米?
A: 11250B: 13550C: 10050D: 12220
参考答案: A 本题解释:【答案】A。



86、(2006北京应届,第3题)若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位,共有多少个同学?_____
A: 17B: 19C: 26D: 41
参考答案: D 本题解释:参考答案题目详解:依题意:假设有名学生,条船;列方程得:所以,选D。考查点:数量关系>数学运算>盈亏问题



87、从一副完整的扑克牌中,至少抽出_____张牌,才能保证至少6张牌的花色相同。
A: 21B: 22C: 23D: 24
参考答案: C 本题解释:正确答案是C考点抽屉原理问题解析一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。



88、(江苏2009A类-16)整数15具有被它的十位数字和个位数字同时整除的性质,则在12和50之间(包括12和50)具有这种性质的整数的个数是_____。
A: 8个B: 10个C: 12个D: 14个
参考答案: A 本题解释:参考答案:A本题得分:题目详解:根据题意,采用列举法:十位数字为1的数有12、15;十位数字为2的数有22、24;十位数字为3的数字有33、36;十位数字为4的数字有44、48.因此,这种性质的整数的个数是:2+2+2+2=8个;所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质



89、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:【解析】B。最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。



90、已知,那么代数式的值:_____
A: B: C: D:
参考答案: B 本题解释:参考答案:B题目详解:原式=;所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题



91、甲、乙、丙练习投篮球,一共投了3150,共有64次没投进。已知甲和乙投进348次,乙和丙一共投进369次,乙投进多少个?_____
A: 28 B: 31 C: 30 D: 33
参考答案: B 本题解释:【解析】B。甲+乙+丙=150-64=86,甲+乙=48,乙+丙=69,故乙=(甲+乙)-(乙+丙)-(甲+乙+丙)=48+69-86=31次。



92、一列火车通过一条长1140米的桥梁(车头上桥至车尾离桥)用50秒,火车穿越长1980米的隧道用80秒,则这列火车车身是_____米。
A: 260B: 270C: 360D: 380
参考答案: A 本题解释:正确答案是A考点行程问题解析该题目列方程得解,设列车车身长n米,则列出方程为(1140+n)÷50=(1980+n)÷80,解得n=260米。故正确答案为A。



93、三个容积相同的瓶子里装满了酒精溶液,酒精与水的比分别是2:1,3:1,4:1。当把三瓶酒精溶液混合后,酒精与水的比是多少?_____
A: 133:47B: 131:49C: 33:12D: 3:1
参考答案: A 本题解释:正确答案是A考点浓度问题解析



94、某高校组织了篮球比赛。其中机械学院队、外语学院队、材料学院队和管理学院队被分在同一个小组,每两队之间进行一场比赛且无平局。结果机械学院队赢了管理学院队,且机械学院队、外语学院队和材料学院队胜利的场数相同,则管理学院队胜了多少场?_____
A: 3B: 2C: 1
参考答案: D 本题解释:正确答案是D,全站数据:本题共被作答1次,正确率为100.00%解析首先按照排列组合的知识,4支队伍两两比赛,应该一共需要进行C(2,4)=6场比赛。由于机械、外语、材料三个学院胜利的场次一样,且不能为0(因为机械赢了管理,所以至少赢1场以上),所以三个学院只能胜1或2场。如果三个学院都仅胜1场,则余下的管理学院需要胜3场(即不败),与题干相冲突。所以三个学院只能都胜2场,管理学院胜0场,满足条件。故正确答案为D。速解本题属于排列组合的知识作为限制条件,核心解题技巧是从关键信息出发,通过假设法排除错误选项。考点排列组合问题笔记编辑笔记



95、已知一杯茶水有若干克,第一次加入一定量的水后,茶水的浓度为6%,第二次又加入同样多的水后,茶水的浓度为4%,求第三次加入同样多的水后茶水的浓度为多少?_____
A: 1%B: 2%C: 3%D: 3.5%
参考答案: C 本题解释:C【解析】设第一次加完水后,含茶6份,含水94份,这样茶水浓度就为6%,第二次加完水后,茶水总量为6÷4%=150份,所以第二次加水为150-100=50份,第三次加入的水也为50份,茶水浓度为6÷(150+50)=0.03=3%。所以,第三次加入同样多的水后茶水的浓度变为3%。故本题正确答案为C。



96、某时刻时针和分针正好成90度的夹角,问至少经过多少时间,时针和分针又一次成90度夹角?_____
A: 30分钟B: 31.5分钟C: 32.2分钟D: 32.7分钟
参考答案: D 本题解释:正确答案是D考点钟表问题解析分针与时针的速度比为12:1,分针与时针成直角到再次成直角的过程中,分针比时针多走180度,即多转过30分钟的角度,因此分针实际走过的时间为30×(12/11)≈32.7分钟。故正确答案为D。标签画图分析



97、现有一批货物共37吨需要运输,有两种货车供选择,其中大车载重7吨,小车载重4吨,现需一次拉完且车都满载,问共需大小货车多少辆?_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:【答案】C。解析:设需要大、小货车各x、y辆,依题意有7x+4y=37。7÷4=1…3,37÷4=9…1,因此x不能为1。x=3时,解得y=4,符合题意,需要的货车数量为3+4=7(辆)。



98、把一根圆木锯成3段需要8分钟,如果把同样的圆木锯成9段需要多少分钟?_____
A: 24分钟B: 27分钟C: 32分钟D: 36分钟
参考答案: C 本题解释:【答案】C。解析:圆木锯成三段有2个切口,2个切口需要用时8分钟,锯成9段有8个切口,则8个切口需要用时8÷2×8=32(分钟),故正确答案为C。



99、大小两个数的和是50.886,较大数的小数点向左移动一位就等于较小的数,求较大的数是_____。
A: 46.25  B: 40.26  C: 46.15 D: 46.26
参考答案: D 本题解释:【解析】D。 四个选项的小数点后都是两位,两数之和为50.886,则两个数的尾数都为6,所以可以排除A、C两项。将B、D两项代入,只有D项符合。



100、张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每件减1元,我就多订购四件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可得与原来一样多的利润。则这种商品每件的成本是_____。
A: 75元B: 80元C: 85元D: 90元
参考答案: A 本题解释:正确答案是A考点经济利润问题解析设该商品每件成本x元,则未减价前每件利润为(100-x)元,减价5%后每件利润为(95-x)元,订购数量为(80+5×4)件,根据题意有80×(100-x)=(95-x)×(80+5×4),解得x=75,故正确答案为A。



Tags:公务员 数学运算 行测
】【打印繁体】 【关闭】 【返回顶部
下一篇事业单位考试考点特训【常识判断..

网站客服QQ: 960335752 - 14613519 - 791315772