1、把一个边长为4厘米的正方形铁丝框拉成两个同样大小的圆形铁丝框,则每个圆铁丝框的面积为_____。
A: AB: BC: CD: D
参考答案: D 本题解释:D【解析】设铁丝拉成的圆的半径为r,则4×4=2×2πr,r=
,圆形面积S=πr2=
。
2、某公司要在长、宽、高分别为50米、40米、30米的长方体建筑的表面架设专用电路管道联接建筑物内最远两点,预设的最短管道长度介于_____。
A: 70—80米之间B: 60—70米之间C: 90—100米之间D: 80—90米之间
参考答案: D 本题解释:正确答案是D考点几何问题解析
3、一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5:3。问两车的速度相差多少?_____
A: 10米/秒B: 15米/秒C: 25米/秒D: 30米/秒
参考答案: A 本题解释:正确答案是A考点行程问题解析两车头相遇到两车尾相离相当于两车车尾相遇过程,设两车速度为5v、3v,则有15×(5v+3v)=250+350,解得v=5,因此两车速度相差5v-3v=2v=10米/秒。标签赋值思想比例转化
4、有a,b,c,d四条直线,依次在a线上写1,在b线上写2,在c线上写3,在d线上写4,然后在a线上写5,在b线,c线和d线上写数字6,7,8……按这样的周期循环下去问数2008在哪条线上?_____
A: a线B: b线C: c线D: d线
参考答案: D 本题解释:正确答案是D考点周期问题解析本题为周期问题。因为有四条线故周期为4,2008除以4商502余数为0,因此2008在d线上,故正确答案为D。
5、某单位有宿舍11间,可以住67人,已知每间小宿舍住5人,中宿舍住7人,大宿舍住8人,则小宿舍间数是_____。
A: 6B: 7C: 8D: 9
参考答案: A 本题解释:【答案】A。解析:设小宿舍有x间,中宿舍有y间,大宿舍有11-x-y间。依题意5x+7y+8(11-x-y)=67,得到3x+y=21。〔化为标准形式〕因为x、y均是大于0的整数,所以x<7。直接选A。〔确定解的范围〕
6、今有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?_____
A: 8B: 10C: 12D: 4
参考答案: D 本题解释:参考答案
题目详解:设剪去小正方形的边长为
:则
;设
、
、
为纸盒的长宽高:对于函数
,
、
、
均为正数,且
为常数;当且仅当
时,
取最大值;所以,
,解得
;此时纸盒容积最大。所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>最值问题
7、某S为自然数,被10除余数是9,被9除余数是8,被8除余数是7,已知100<S<1000,请问这样的数有几个?_____
A: 5 B: 4 C: 3 D: 2
参考答案: D 本题解释:D。【解析】被N除余数是N-1,所以这个数字就是几个N的公倍数-1。10,9,8的公倍数为360n(n为自然数),因为100<S<1000,所以有两个数符合条件。
8、从装满1000克浓度为50%的酒精瓶中倒出200克酒精,再倒入蒸馏水将瓶加满。这样反复三次后,瓶中的酒精浓度是多少_____
A: 22.5%B: 24.4%C: 25.6%D: 27.5 %
参考答案: C 本题解释:【解析】C。每次操作后,酒精浓度变为原来的,因此反复三次后浓度变为。
9、甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。摩托车开始速度是50千米/小时,中途减速为40千米/小时。汽车速度是80千米/小时。汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时是在他出发后的多少小时?_____
A: 1B: 3/2C: 1/3D: 2
参考答案: C 本题解释:C解析:汽车行驶100千米需100÷80=5/4(小时),所以摩托车行驶了5/4+1+1/6=29/12(小时)。如果摩托车一直以40千米/小时的速度行驶,29/12小时可行驶96(2/3)千米,与100千米相差10/3千米。所以一开始用50千米/小时的速度行驶了10/3÷(50-40)=1/3(小时)。故本题选C.
10、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3∶1,另一个瓶子中酒精与水的体积比是4∶1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?_____
A: 31∶9B: 7∶2C: 31∶40D: 20∶11
参考答案: A 本题解释:正确答案是A考点其他解析设两个瓶子每个容量为20,第一个瓶子中酒精和水分别为15和5;另一个瓶子中酒精和水分别为16和4,混合后酒精和水体积比为(15+16):(5+4)=31:9,故正确答案为A。秒杀技混合后酒精与水的比例显然介于3到4之间,只有选型A、B符合,而选项B显然是题目设置的陷阱选项(直接将数字相加),因此只剩A项,故正确答案为A。标签赋值思想
11、(2008.陕西)一个三位数除以43,商是a,余数是b,则a+b的最大值是:_____
A: 957B: 64C: 56D: 33
参考答案: B 本题解释:参考答案:B题目详解:这个三位数可表示为43a+b,且100≤43a+b≤999:当43a+b取得最大值时,有43a+b=999。由999÷43=23……10可得,此时a为23,b为10;a+b=33;再根据根据商与余数的关系可知:b可以取得的最大值为43-1=42,此时a的最大取值为(999-42)÷43=22,则a+b=64。所以,a+b的最大值为64。所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>最值问题
12、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。
由图可知;只参加一个项目的有l+2=3=6名。
13、x为正数,表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2、3、5共3个。那么<<19>+<93>+<4>×<1>×<8>的值是:_____
A: 15B: 12C: 11D: 10
参考答案: C 本题解释:参考答案:C题目详解:根据题意,分步计算:<19>为不超过19的质数,即2、3、5、7、11、13、17、19共8个。<93>为不超过93的质数,共24个,而<1>为不超过1的质数,为O个,那么<4>×<1>×<8>=0;则原式=<<19>+<93>>=<8+24>=<32>=11。所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
14、某地收取手机费的标准是:每月打电话不超过30分钟,每分钟收费5角;如果超出30分钟,超出部分按每分钟7角收费。已知某月甲比乙多交了3元3角的手机费,则该月甲、乙两人共打了多少分钟电话?_____
A: 63B: 62C: 61D: 60
参考答案: A 本题解释:如果甲、乙两人打电话都超过30分钟,那么相差的电话费就应该是7的倍数,显然33不是7的倍数;如果甲、乙两人打电话都没超过30分钟,那么相差的电话费就应该是5的倍数,显然33不是5的倍数,因此只有一种情况:甲超过了30分钟,乙未达到30分钟。因为只有33=5×1+7×4一种情况满足题意,故甲打电话时间为30+4=34(分钟),乙打电话时间为30一1=29(分钟),甲、乙两人共打了34+29=63(分钟)。故选A。
15、某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的_____倍。
A: 6 B: 8 C: 10 D: 12
参考答案: D 本题解释:D。列方程组。设学徒工、熟练工、技师分别有X,Y,Z名。则有:X+Y+Z=802X+6Y+7Z=4802X=6Y得到:X=15,Y=5,Z=60,所以Z∶Y=60∶5=12。选D。
16、相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是_____。
A: 四面体B: 六面体C: 正十二面体D: 正二十面体
参考答案: D 本题解释:正确答案是D考点几何问题解析根据等量最值原理,同样表面积的空间几何图形,越接近于球,体积越大。而四个选项中,正二十面体最接近于球,所以体积最大。故正确答案为D。
17、某商品76件,出售给33位顾客,每位顾客最多买3件。买1件按原定价,买2件降价10%,买3件降价20%。最后结算,平均每件恰好按原价的85%出售,那么买3件的顾客有多少人?_____
A: 14B: 10C: 7D: 2
参考答案: A 本题解释:A【解析】 买2件商品按原价的90%,买3件商品按原价的80%。由于 =85%,即1个人买1件与1个人买3件的平均,每件正好是原定价的85%;又由于 =85%,所以2个人买3件与3个人买2件的平均,每件正好是原价的85%。因此,买3件的人数是买1件的人数与买2件人数的之和。设买2件的有x人,则买1件的有(33-x- x)÷2(人),买3件的有 x+(33-x- x)÷2(人)。因为共有商品76件,于是有方程(33-x- x)÷2+2x+3×[ x+(33-x- x)÷2]=76,解出x=15(人)。买3件的有x+(33-x- x)÷=14(人)故买3件的顾客有14人。选A。
18、小张从家到单位有两条一样长的路.一条是平路、另一条是一半上坡路,一半下坡路,小张上班走这两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的_____倍。
A: 3/5B: 2/5C: 1/4D: 3/4
参考答案: D 本题解释:【答案】D。解析:因为距离和时间都相同,则可以设路程是1,时间也是1,那么平路的速度为1÷1=1,又因为上坡和下坡路各一半也相同,那么上坡和下坡的路程都是O.5。下坡的速度为1.5,则下坡时问为0.5/1.5=1/3,因此上坡时间为1—1/3=2/3,上坡速度为1/2÷2/3=3/4。
19、一个小数去掉小数部分后得到一个整数,这个整数加上原来的小数与4的乘积,得27.6。原来这个小数是_____。
A: 2.60B: 5.65C: 7.60D: 12.65
参考答案: B 本题解释:将原来的小数分成整数部分、小数部分和整个小数。此题可理解为:原小数的4倍与它的整数部分之和为27.6,这样27.6等于5个整数部分与4个小数部分之和。因为4个小数部分之和小于4,可知原小数的整数部分应满足:5倍整数<27<5倍整数+4,所以此整数为5。所以此小数为:5+(27.6-5×5)÷4=5.65,因此,本题正确答案为B。
20、有六个人的平均年龄是16岁,把其中一个人换成另外一个13岁少年后,再增加一个20岁的青年,这七个人的平均年龄则变为18岁。被换掉的那个人的年龄是多少?_____
A: 6岁B: 3岁C: 5岁D: 4岁
参考答案: B 本题解释:正确答案是B考点平均数问题解析六个人平均年龄是16岁,则他们年龄的和为6×16=96,7个人平均年龄是18岁,则他们年龄的和为7×18=126,去掉新进来的13岁少年和20岁青年后,剩下5个人的年龄和为126-13-20=93,这五个人的组合与六个人的组合相差的一个人就是被换掉的人,则他的年龄为96-93=3(岁)。故正确答案为B。标签差异分析
21、某日小李发现日历有好几天没有翻,就一次翻了6张,这6天的日期加来起数字是141,他翻的第一页是几号?_____
A: 18B: 21C: 23D: 24
参考答案: B 本题解释:正确答案是B考点星期日期问题解析6个连续自然数的和为141,则中间项为23.5,即第三项为23,则第一页为21日。因此,答案选择B选项。注释:中间项在等差数列中的应用很广,应熟记根据中间项求和的公式。标签完全平方和差公式
22、甲乙两个乡村阅览室,甲阅览室科技类书籍数量的1/5相当于乙阅览室该类书籍的1/4,甲阅览室文化类书籍数量的2/3相当于乙阅览室该类书籍的1/6,甲阅览室科技类和文化类书籍的总量比乙阅览室两类书籍的总量多1000本,甲阅览室科技类书籍和文化类书籍的比例为20:1,问甲阅览室有多少本科技类书籍?_____
A: 15000B: 16000C: 18000D: 20000
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析假设甲阅览室科技类书籍有20a本,文化类书籍有a本,则乙阅览室科技类书籍有16a本,文化类书籍有4a本,由题意可得(20a+a)-(16a+4a)=1000,解得a=1000,则甲阅览室有科技类书籍20000本。故正确答案为D。
23、2010年某种货物的进口价格是15元/公斤,2011年该货物的进口量增加了一半,进口金额增加了20%。问2011年该货物的进口价格是多少元/公斤?_____
A: 10B: 12C: 18D: 24
参考答案: B 本题解释:正确答案是B考点经济利润问题解析假设2010年进口了2公斤,2010年进口金额是30元,2011年进口了3公斤,进口金额是30×(1﹢20%)=36,因此2011年进口价格是36÷3=12元/公斤,故正确答案为B。标签赋值思想
24、A、B、C三件衬衫的总价格为520元,分别按9.5折,9折,8.75折出售,总价格为474元,A、B两件衬衫的价格比为5﹕4,A、B、C三件衬衫的价格分别是多少元?()
A: 250,200,70B: 200,160,160C: 150,120,250D: 100,80,340
参考答案: B 本题解释:设A,B,C三件衬衫的价格分别为
,
,
,则可以列方程组:
,
,
,解得
,
,
,所以选B。
25、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:正确答案是A考点经济利润问题解析假设每册书利润为10元,去年销量为10册,则今年每册书的利润为8元,销量为17册。因此去年的总利润为10×10=100元,今年的总利润为8×17=136元,因此今年销售该畅销书的总利润比去年增加了36%。正确答案为A。
26、某单位依据笔试成绩招录员工,应聘者中只有四分之一被录取,被录取的应聘者平均分比录取分数线高6分,没有被录取的应聘者平均分比录取分数线低10分,所有应聘者的平均分是73分,问录取分数线是多少分?_____
A: 80B: 79C: 78D: 77
参考答案: B 本题解释:【答案】B。
27、100个自然数的和是20000,其中奇数的个数比偶数的个数多,那么偶数最多能有多少个?_____
A: 38B: 40C: 48D: 49
参考答案: C 本题解释:参考答案:C题目详解:依题意:“100个自然数的和是20000”,即和为偶数;又因为奇数的个数为偶数个,奇数的个数比偶数的个数多:所以最多有100÷2-2=48个偶数;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性
28、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: C 本题解释:C。【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。
29、如下图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?()
A: 15B: 16C: 14D: 18
参考答案: B 本题解释:【答案】B。解析:直接应用三集合容斥原理公式,可知:290=64+180+160-24-70-36+X,则290=(64-24)+(180+160)-70-36+X,即290=40+(180+160)-70-36+X,X=16,故正确答案为B。
30、100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?_____
A: 22B: 21C: 24D: 23
参考答案: A 本题解释:正确答案是A考点多位数问题解析要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。
31、某年级有4个班,不算甲班其余三个班的总人数有131人,不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人? _____
A: 177B: 176C: 266D: 265
参考答案: A 本题解释:A。【解析】有①乙+丙+丁=131,②甲+乙+丙=134,③乙+丙+1=甲+丁,①-③得丁-1=131-甲-丁,甲=132-2丁,①-②得,甲=丁+3,丁=43,总人数为134+43=177人
32、某地区水电站规定,如果每月用电不超过24度,则每度收9分钱,如果超过24度,则多出度数按每度2角收费,若某月甲比乙多交了9.6角,则甲交了_____。
A: 27角6分B: 26角4分C: 25角5分D: 26角6分
参考答案: A 本题解释:参考答案:A题目详解:解法一:根据题意,由于甲比乙多交的96分,既不是20的倍数也不是9的倍数,因此,甲比乙多交的电费应由每度9分和每度2角两部分构成,即
,故甲超过标准用电量3度,需要交
分。因此,选A,解法二:根据某月甲比乙多交了9.6角可知,该月甲用电量必超过24度,而乙没有超过标准用电量,假设甲用电量为
,乙用电量为y,则
因为360,9能被3整除,
,有
=27,30……当
=27时,
=20,正确,因此,甲需要交
分。因此,选A考查点:数量关系>数学运算>特殊情境问题>分段计算问题
33、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:参考答案:A题目详解:每天审核的课题应尽可能少,才能增加审核天数。假设第1天审核1个,则第2天最少审核2个,……依此类推,则审核完这些课题天数最多的方案应为每天审核1,2,3,4,5,6,9或1,2,3,4,5,7,8。显然所需天数都为7天。所以,选A。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
34、下列排序正确的是:_____
A:
B:
C:
D:
参考答案: B 本题解释:参考答案:B题目详解:观察选项,可得:
,
,
;比较三者大小:因为
,所以
,即
所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>比较大小问题
35、阳光下,电线杆的影子投射在墙面及地面上,其中墙面部分的高度为1米,地面部分的长度为7米。甲某身高1.8米,同一时刻在地面形成的影子长0.9米。则该电线杆的高度为_____。
A: 12米B: 14米C: 15米D: 16米
参考答案: C 本题解释:正确答案是C考点几何问题解析
标签几何等比放缩性质
36、某企业组织80名员工一起去划船,每条船乘客定员12人,则该企业最少需要租船_____条。
A: 7B: 8C: 9D: 10
参考答案: A 本题解释:正确答案是A考点趣味数学问题解析80÷12=6……8,6条船不够,至少7条。故正确答案为A。
37、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
38、某服装厂要生产一批某种型号的学生服,已知每3米长的某种面料可做上衣2件。或做裤子3条,计划用300米长的这种布料生产学生服,应用多少米布料产生上衣,才能恰好配套?_____
A: 120B: 150C: 180D: 210
参考答案: C 本题解释:答案:C【解析】3米长可做上衣2件,或裤子3条,则300米布料可做上衣200件,或裤子300条,即如需成套,则上衣和裤子的数量必须同样多,那么上衣所用布料当为3/5,即180米,裤子为120米,共可做120套服装。所以答案为选项C。
39、有甲乙两个水池,其中甲水池中一直有水注入,如果分别用8台抽水机去抽空甲和乙水池,分别需要16小时和4小时,如给甲水池加5台,提前10小时抽完。若共安排20台抽水机,则为了保证两个水池能同时抽空,在甲水池的抽水机比乙水池多多少台?_____
A: 4B: 6C: 8D: 10
参考答案: C 本题解释:正确答案是C考点牛吃草问题解析假设1台抽水机效率为1,则乙水池水量为32。设甲水池水量为X,注水效率为Y,则可得X=(8-Y)×16,X=(13-Y)×6,解得X=48,Y=5;现假设甲、乙水池用的抽水机分别为M、N,为保证同时抽完,可得48:32=(M-5):N,M+N=20,解得M=14,N=6,因此甲水池的抽水机比乙水池多8台。故正确答案为C。
40、某产品售价为67.1,在采用新技术生产节约10%成本之后,售价不变,利润可可比原来翻一番。则该产品最初的成本为_____元。
A: 51.2B: 54.9C: 61D: 62.5
参考答案: C 本题解释:正确答案:C节约的10%成本为增加的利润,利润翻一番为原先的2倍,则最初利润为成本的10%,最初的成本为67.1÷(1+10%=61元。
41、爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁。当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁,现在三人的年龄各是多少岁?_____
A: 10,14,40B: 6,18,40C: 8,14,42D: 9,15,40
参考答案: A 本题解释:参考答案:A题目详解:解法一:设妹妹与哥哥年龄差为
,哥哥与爸爸年龄差为
。当爸爸的年龄是哥哥年龄3倍的时候哥哥的年龄相当于
,此时
。当哥哥年龄是妹妹年龄2倍时,即
。联立这两个方程得到
。妹妹今年年龄为:(64-26-4-4)÷3=10岁,哥哥今年年龄为:14岁,爸爸今年年龄为:40岁。所以,选A。解法二:代入法,A正确,所以,选A考查点:数量关系>数学运算>特殊情境问题>年龄问题
42、100个馒头给100个和尚吃,大和尚每人吃3个,小和尚每3人吃1个,大和尚有多少人?_____
A: 15B: 25C: 50D: 75
参考答案: B 本题解释:参考答案:B题目详解:解法一:假设有x个大和尚,y个小和尚,则:
解法二:数字特性法:小和尚每3人吃一个馒头,所以小和尚人数是3的倍数,代入选择,排除A、C、D,选择B。考查点:数量关系>数学运算>特殊情境问题>鸡兔同笼问题>鸡兔同笼变形问题
43、某单位实行五天工作制,即星期一至星期五上班,星期六和星期日休息。现已知某月有31天,且该单位职工小王在该月休息了9天(该月没有其他节日),则这个月的六号可能是下列四天中的哪一天?_____
A: 星期五B: 星期四C: 星期三D: 星期一
参考答案: A 本题解释:正确答案是A考点星期日期问题解析该月有31天,即有四周加3天,四周有8个休息日,还有一个休息日,来自多余的三天,将这三天看做月初,则可知这个月的1日必为星期日,否则会出现更多的休息日,于是可知这个月的6号为星期五。故正确答案为A。
44、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D 本题解释: 【解析】D。可以采用带入法,将选项代入题干中,发现只有当最初的盐水是500克的时候才能满足要求,或者利用倒推方法解题。
45、某高校2006年度毕业学生7650名,比上年度增长2%,其中本科生毕业数量比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有_____。
A: 3920人B: 4410人C: 4900人D: 5490人
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析假设去年研究生毕业数为A,本科生毕业数为B,那么今年研究生毕业数为1.1A,本科生毕业数为0.98B。由题意知:A+B=7650÷(1+2%),1.1A+0.98B=7650,解得B=5000人。则今年本科生毕业数量为5000×0.98=4900人,故正确答案为C。秒杀技由“本科生比上年度减少2%”可知“今年本科生数=98%×去年本科生数”(注意98%是百分数,本质上也是个分数),所以今年本科生应能够被49整除。由“研究生毕业数量比上年增加10%”知“今年研究生数=110%×去年研究生数”,所以今年研究生数应能够被11整除,据此两条得出正确答案为C。
46、一个数被4除余1,被5除余2,被6除余3,这个数最小是几?_____
A: 10B: 33C: 37D: 57
参考答案: D 本题解释:参考答案:D题目详解:此题为剩余定理中差同的情况。根据"差同减差,最小公倍数做周期"可知:这个数加上3以后,为4、5、6的倍数;而4、5、6的最小公倍数为60:因此该数最小为
;所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>特殊形式>差同
47、用一个尽量小的自然数乘以1999,使其乘积的尾数出现六个连续的9,求这个乘积。_____
A: 5999999B: 4999999C: 3999999D: 2999999
参考答案: C 本题解释:正确答案是C考点多位数问题解析解析1:将各项代入检验,只有3999999能被1999整除,故正确答案为C。解析2:1999=2000-1,2001=2000+1,因此1999×2001=(2000-1)×(2000+1)=2000×2000-1=3999999。故正确答案为C。标签直接代入
48、甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?_____
A: 60B: 50C: 45D: 30
参考答案: A 本题解释:参考答案:A题目详解:根据题意,可知:甲单独清扫需10小时,每小时清扫总路程的
,乙单独清扫需15小时,每小时清扫总路程的
,相遇时甲乙一共用时为
小时;则甲清扫了总路程的
,乙清扫了总路程的
,甲比乙多扫了总路程的
,这一段是12千米,则东、西两城相距为
千米。考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线一次相遇问题
49、把黑桃、红桃、方片、梅花四种花色的扑克牌按黑桃10张、红桃9张、方片7张、梅花5张的顺序循环排列。问第2015张扑克牌是什么花色?_____
A: 黑桃 B: 红桃 C: 梅花 D: 方片
参考答案: C 本题解释:【答案】C。解析:一个完整的循环包括黑桃10张,红桃9张,方片7张,梅花5张,共31张,2015÷31=65,刚好可以被31整除,因此第2015张牌是梅花。正确答案为C。
50、某班有50位同学参加期末考试,结果英文不及格的有15人,数学不及格的有19人,英文和数学都及格的有21人。那么英文和数学都不及格的有_____人。
A: 4B: 5C: 13D: 17
参考答案: B 本题解释:本题正确答案为B。解析:设英文和数学都不及格的有x人,由容斥原理可得15+19-x=50-21,得x=5,故选B。
51、某市财政局下设若干处室,在局机关中不是宣传处的有206人,不是会计处的有177人,已知宣传处与会计处共有41人,问该市财政局共有多少人?_____
A: 218 B: 247C: 198D: 212
参考答案: D 本题解释: 【解析】由题意有:
人。所以选D。
52、某种型号拖拉机,前轮直径为50厘米,后轮直径为150厘米,拖拉机前进时,前轮转了240圈,求后轮转了多少圈?_____
A: 60B: 40C: 30D: 80
参考答案: D 本题解释:【解析】D。圆的周长与其直径成正比。
53、一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?_____
A: 12B: 8C: 6D: 4
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。
54、2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为_____。
A: 2003B: 2004C: 2005D: 2006
参考答案: B 本题解释:正确答案是B考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。
55、某养殖场养了224头牲畜,羊比牛多38,牛比猪多6,如果将牛总数的75%换羊,1头牛换5只羊,问羊的总数是多少?_____
A: 342B: 174C: 240D: 268
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析设羊的数目为x头,则牛的数目为(x-38)头,猪的数目为(x-38-6)头,根据题意得:x+(x-38)+(x-38-6)=224,解得x=102,则更换后羊的总数为:x+(x-38)×75%×5=102+(102-38)×75%×5=342,故正确答案为A。
56、红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到队头,然后立即返回队尾,共用10分钟。求队伍的长度。_____
A: 630米B: 750米C: 900米D: 1500米
参考答案: A 本题解释:【答案】A。解析:设王老师从队尾走到队头用x分钟,可列方程(150-60)×x=(150+60)×(10-x),解得x=7分钟,则队伍的长度为(150-60)×7=630米,选择A。
57、(2008国家,第60题)甲、乙、丙三种货物,如果购买甲3件,乙7件,丙1件共需3.15元;如果购买甲4件,乙10件,丙1件共需4.20元;那么购买甲、乙、丙各1件共需多少钱?_____
A: 1.05元B: 1.40元C: 1.85元D: 2.10元
参考答案: A 本题解释:参考答案:A题目详解:解法一:根据题意,设购买甲、乙、丙分别需要
元,则:
得:
所以,选A解法二:本题有两个方程,三个未知数,属于不定方程组,因此肯定无法最终解得具体值
由上式可以看到,尽管
都不能确定,但它们的和是确定的,因此在实际操作当中,我们完全可以找出一个简单的满足条件的数字组合,这样算出来的三个量的和肯定也将是最终的结果。由于原题中
的系数最大,不妨令
,即:
上面两种解法相比,解法一简洁明了,但上了考场不一定能够迅速想到其系数配比。因此,在能够迅速得到两式系数的时候,应该选用解法一,否则,我们应该利用解法二的方法迅速求解。考查点:数量关系>数学运算>计算问题之算式计算>不定方程问题>多元一次不定方程(组)
58、一项工程由甲单独做需要15天做完,乙单独做需要12天做完,二人合做4天后,剩下的工程由甲单独做,还需做几天方可做完?_____。
A: 6 B: 8C: 9 D: 5
参考答案: A 本题解释:A 【解析】依题意,甲每天完成总工程的1/15,乙每天完成总工程的1/12,甲、乙合作4天共完成(1/12+1/15) ×4=3/5,故剩下的工程甲需要的时间为(1—3/5)/(1/15)=6,总计算式即为[1一(1/12+1/15)]×4/(1/15)=6(天)。
59、河道赛道长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?_____
A: 48 B: 50 C: 52 D: 54
参考答案: C 本题解释: C。
60、11338×25593的值为:_____
A: 290133434B: 290173434C: 290163434D: 290153434
参考答案: B 本题解释:答案:B 解析:由于25593为3的倍数,故最后的结果一定能够被3整除,分析选项,只有B符合。
61、一列普通客车以每小时40公里的速度在9时由甲城开往乙城,一列快车以每小时58公里的速度在11时也由甲城开往乙城,为了行驶安全,列车间的距离不应当少于8公里,则客车最晚应在_____时在某站停车让快车通过。
A: 14B: 15C: 16D: 13
参考答案: B 本题解释:B解本题的关键是求出两列火车间的速度差,由题知两列火车的速度差为18公里/小时;从9小时到11时普通客车所行使的路程为40×2=80公里,由题中列火车间最少距离的规定,可设的这一个速度差行使普通列车先行使80公里的路程所需时间为x,所可列方程为80-18x≥8,解之得x≤4,故该普通列车应在15时在某站停车让快车通过。
62、小王忘记了朋友手机号码的最后两位数字,只记得倒数第一是奇数,则他最多要拨号多少次才能保证拨对朋友的手机号码?_____
A: 90B: 50C: 45D: 20
参考答案: B 本题解释:正确答案是B考点排列组合问题解析先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能,因此总的组合方法有5×10=50(种),故正确答案为B。秒杀技最后两位数可能情形共有100个,其中奇数的占一半,即50个,故正确答案为B。
63、已知
,则
_____
A:
B:
C:
D:
参考答案: B 本题解释:参考答案:B题目详解:由
可知:
=0,
=0,即
,
;则原式=
所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题
64、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。语文、数学都优秀的有多少人?_____
A: 30B: 35C: 57D: 65
参考答案: A 本题解释:参考答案:A题目详解:此题是典型的两个集合的容斥问题,由题意设:A={{语文成绩优秀的人}};B={{数学成绩优秀的人}};因此,
={{五年级参加语文、数学考试的人}};
={{语文和数学都优秀的人}}由两个集合的容斥原理可得:
=
=
所以,选A。考查点:数量关系>数学运算>容斥原理问题>两个集合容斥关系
65、某单位举行“庆祝建党90周年”知识抢答赛,总共50道抢答题。比赛规定:答对1题得3分,答错1题扣1分,不抢答得0分。小军在比赛中抢答了20道题,要使最后得分不少于50分,则小军至少要答对_____道题。
A: 16 B: 17 C: 18 D: 19
参考答案: C 本题解释:C。假设答对x题,取最坏情形,剩下都答错,则答错20-x题,总分不少于50,则有3x-(20-x)≥50,求得x≥17.5,取最小值为18。
66、甲乙两人从相距1350米的地方,以相同的速度相对行走,两人在出发点分别放下1个标志物。再前进10米后放下3个标志物。前进10米放下5个标志物,再前进10米放下7个标志物,以此类推。当两个相遇时,一共放下了几个标志物?_____
A: 4489B: 4624C: 8978D: 9248
参考答案: D 本题解释:参考答案
题目详解:解法一:
,相遇时每人走了675米,就是每人有67个10米放下球,原点第1个球为第1项,第一个10米就是第二项,总共68项
解法二:相遇时每人行走了675米,最后一次放标志物是在第670米处,放了
个,所有标志物个数是
。考查点:数量关系>数学运算>计算问题之算式计算>数列问题>数列求和>单一数列求和>等差数列求和
67、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。老师点睛:45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。
68、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0. 50元,丙种卡每张1. 20元。用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?_____
A: 8元B: 10元C: 12元D: 15元
参考答案: C 本题解释: C解析:盈亏总额为0. 5×8+1. 2×6=11. 2(元),单价相差1. 2-0. 5=0. 7(元),所以共可买乙种卡11. 2÷0. 7=16(张)。妈妈给了红红0. 5×(16+8)=12(元)。故本题正确答案为C。
69、将棱长为1的正方体
,切去一角
后,剩下几何体的表面积是_____。
A:
B: 5C:
D:
参考答案: C 本题解释:参考答案:C题目详解:如右图所示,可知:原正方体表面积:
;减少的表面积为:
;增加的表面积为:
;故剩下面积为:
。所以,选C。考查点:数量关系>数学运算>几何问题>立体几何问题>表面积与体积问题
70、有一1500米的环形跑道,甲、乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以相反方向跑,2分钟后二人相遇,则乙的速度为_____
A: 330米/分钟B: 360米/分钟C: 375米/分钟D: 390米/分钟
参考答案: B 本题解释:正确答案:B解析:依据题意:(甲的速度-乙的速度)×50=1500,(甲的速度+乙的速度)×2=1500,推出甲、乙各为390、360。故答案为B。
71、烙饼需要烙它的正、反面,如果烙熟一张饼的正、反面各用去3分钟,那么用一次可容下2张饼的锅来烙21张饼,至少需要多少分钟?_____
A: 50B: 59C: 63D: 71
参考答案: C 本题解释:参考答案:C题目详解:先将两张饼同时放人锅内一起烙,3分钟后两张饼都熟了一面.这时取出一张,第二张翻个身,再放人第三张,又烙了3分钟,第二张已经烙熟取出来,第三张翻个身,再将第一张放人烙另一面,再烙3分钟,锅内的两张饼均已烙熟。这样烙3张饼,用时9分钟。所以烙21张饼,至少用去
分钟。考查点:数量关系>数学运算>统筹问题>时间统筹问题
72、在前100个自然数中,能被3除尽的数相加,所得到的和是多少?_____
A: 1250B: 1683C: 1275D: 1400
参考答案: B 本题解释:参考答案:B本题得分:题目详解:根据题意,在前100中,能被3除尽的数,即个位数字之和为3的倍数;“在前100个自然数中,能被3整除的数”有3、6、9、12、15、18……故可以转化为首项为3,末项为99,公差为3,共有33项的等差数列;在前100个自然数中,能被3除尽的数的和——等差数列求和:
所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质
73、某市出租车运费计算方式如下:起步价2公里6元,2公里之后每增加1公里收费1.7元,6公里之后每增加1公里收费2.0元,不足1元按四舍五入计算。某乘客乘坐了31公里,应该付多少元车费? _____
A: 63 B: 64 C: 65 D: 66
参考答案: A 本题解释:A。2公里以内收费6元;2-6公里收费1.7×4=6.8元;6-31公里收费2×25=50元。因此总计应付车费62.8元,四舍五入即63元。故选A项。
74、一个长方形,若将短边长度增加4厘米,长边长度增加一倍,则面积是原来的3倍,若将长边缩短8厘米,就成正方形,则原长方形面积是多少平方厘米?_____
A: 180B: 128C: 84D: 48
参考答案: B 本题解释:正确答案是B考点几何问题解析根据题干设短边为n,则长边为n+8。则有2(n+4)(n+8)=3n(n+8),可得n=8,故原长方形面积=8×16=128。所以正确答案为B。
75、某单位周六下午组织40名干部职工参加义务植树活动,共需挖树坑60个,运树苗不限。他们分为甲、乙、丙三组,每组劳动效率如下表所示。在保证挖好60个树坑的前提下,科学安排,可使运树苗的量达到最大。最多可运_____棵树苗。
A: 600B: 560C: 540D: 520
参考答案: D 本题解释:正确答案是D考点统筹规划问题解析由表中数据可知,甲组运树苗的效率远高于乙、丙两组,则应当尽量安排甲组的人运树苗,才能使运树苗量达到最大。如果乙、丙两组都去挖坑,则可挖坑15×2.4+10×1.6=36+16=52个,还缺8个,则另须甲组两人挖坑,甲组剩余13人全部都去运树苗,则有13×40=520棵,所以最多可运520棵树苗,故正确答案为D。
76、
_____
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点其他解析
故正确答案为D。
77、甲乙两个乡村阅览室,甲阅览室科技类书籍数量的1/5相当于乙阅览室该类书籍的1/4,甲阅览室文化类书籍数量的2/3相当于乙阅览室该类书籍的1/6,甲阅览室科技类和文化类书籍的总量比乙阅览室两类书籍的总量多1000本,甲阅览室科技类书籍和文化类书籍的比例为20:1,问甲阅览室有多少本科技类书籍?_____
A: 15000B: 16000C: 18000D: 20000
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析假设甲阅览室科技类书籍有20a本,文化类书籍有a本,则乙阅览室科技类书籍有16a本,文化类书籍有4a本,由题意可得(20a+a)-(16a+4a)=1000,解得a=1000,则甲阅览室有科技类书籍20000本。故正确答案为D。
78、数学竞赛团体奖品是10000本数学课外读物。奖品发给前五名代表队所在的学校。名次在前的代表队获奖的本数多,且每一名次的奖品本数都是100的整数倍。如果第一名所得的本数是第二名与第三名所得的本数之和,第二名所得的本数是第四名与第五名所得本数之和,那么,第三名最多可以获得多少本?_____
A: 1600B: 1800C: 1700D: 2100
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设一到五名分别得到A、B、C、D、E。由题意可得,A=B+C,B=D+E,故A+B+C+D+E=B+C+B+C+B=3B+2C=10000,则3B=10000-2C,显然10000-2C必为3的倍数,只有C符合,故正确答案为C。
79、在平面直角坐标系中,如果点P(3a-9,1-a)在第三象限内,且横坐标纵坐标都是整数,则点P的坐标是_____。
A: (-1,-3)B: (-3,-1)C: (-3,2)D: (-2,-3)
参考答案: B 本题解释:正确答案是B考点计算问题解析根据点P在第三象限,有3a-9<0,1-a<0,得1
80、(2008陕西,第20题)某个月有五个星期六,已知这五个日期之和为85,则这个月最后一个星期六是多少号?_____
A: 10B: 17C: 24D: 31
参考答案: D 本题解释:参考答案
题目详解:五个日期之和为85:平均数(即“中位数”)应该是
,因此5个数正中间那个为17;这5个日期(相差7)分别为:3、10、17、24、31;最后一个星期六是31号;所以,选D。考查点:数量关系>数学运算>特殊情境问题>日期星期问题
81、有一批零件,甲、乙两种车床都可以加工。如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务。现在用甲、乙两车床一起加工,结果12天就完成了任务。如果只用甲车床单独加工需多少天完成任务?_____
A: 20天B: 30C: 40D: 45
参考答案: A 本题解释:参考答案:A题目详解:设甲单独加工x天,乙单独加工
天完成,则甲的工作效率为:
,乙的工作效率为:
;而甲乙合作的效率为:
,即:
,解得
。所以,选A。考查点:数量关系>数学运算>工程问题>单独完工问题
82、如果甲比乙多20%,乙比丙多20%,则甲比丙多百分之多少?_____
A: 44B: 40C: 36D: 20
参考答案: A 本题解释: 【解析】A。甲=丙×(1+20%)×(1+20%)=144%丙,则甲比丙多44%。
83、箱子中有编号1—10的10个小球,每次从中抽出一个记下编号后放回,如果重复3次,则3次记下的小球编号乘积是5的倍数的概率是多少?_____
A: 43.2%B: 48.8%C: 51.2%D: 56.8%
参考答案: B 本题解释:正确答案是B考点概率问题解析若3次记下的小球编号乘积是5的倍数,则至少有一次需要抽到5或10。其反面是一次5或10都没有抽到,这种情况的概率为0.8×0.8×0.8=0.512。故3次记下的小球编号乘积是5的倍数的概率为1-51.2%=48.8%。故正确答案为B。
84、某班男生比女生人数多80%,一次考试后,全班平均成级为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是_____。
A: 84B: 85C: 86D: 87
参考答案: A 本题解释:正确答案是A设男生的平均分为y,则女生的平均分是1.2y,根据整除特性可知,女生的平均分数肯定能够被12整除,观察四个选项,只有A选项84能够被12整除,故A为正确选项。
85、_____
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点几何问题解析
标签画图分析
86、一杯含盐
的盐水
克,要使盐水含盐
,应该加盐多少克?_____
A: 12.5B: 10C: 5.5D: 5
参考答案: A 本题解释:参考答案:A题目详解:应用工程法:设需要盐
克,
;
;所以,选A。考查点:数量关系>数学运算>浓度问题>溶质变化
87、一批树苗有100多棵,小王每天种8棵,第21天种完,小李每天种9棵,第18天种完。小孙每天种10棵,问第几天可以种完?_____
A: 14B: 15C: 17D: 18
参考答案: C 本题解释:【答案】C。解析:设这批树苗一共有z棵,从“小王每天种8棵,第21天种完”可知,8×20+l≤z≤8×21;从“小李每天种9棵,第18天种完”可知,9×17+1≤z≤9×18,结合两个不等式得:161≤z≤162。如果小孙每天种10棵的话,在z的取值范围内,一定是在第17天种完。
88、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小虫共18只,有118条腿和18对翅膀,蜘蛛,蜻蜓,蝉各几只_____
A: 5、5、8B: 5、5、7C: 6、7、5D: 7、5、6
参考答案: A 本题解释:【答案】A。解析:这是道复杂的“鸡兔同笼”问题,首先,蜻蜓和蝉都是6条腿,数腿的时候可以放在一起考虑,因此蜘蛛有(118—6×18)÷(8—6)=5只,因此蜻蜓和蝉共有18—5=13只,从而蜻蜓有(18—1×13)÷(2—1)=5只,蝉有13—5=8只。
89、某天体沿正圆形轨道绕地球一圈所需时间为29.53059天,转速约1公里/秒。假设该天体离地球的距离比现在远10万公里而转速不变,那么该天体绕地球一圈约需要多少天?_____
A: 31 B: 32 C: 34 D: 37
参考答案: D 本题解释: D。算式为[29.53059×24×60×60×1/π+100000×2]×π÷1÷60÷60÷24≈36.8天,所以答案为D项。
90、一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?_____
A: 1894年B: 1892年C: 1898年D: 1896年
参考答案: B 本题解释:正确答案是B考点年龄问题解析由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。
91、甲工人每小时可加工A零件3个或B零件6个,乙工人每小时可加工A零件2个或B零件7个。甲、乙两工人一天8小时共加工零件59个,甲、乙加工A零件分别用时为x小时、y小时,且x、y皆为整数,两名工人一天加工的零件总数相差_____。
A: 6个B: 7个C: 4个D: 5个
参考答案: B 本题解释:正确答案是B考点不定方程问题解析根据题意,甲、乙加工B零件的时间分别为8-x、8-y,则可得:3x+6(8-x)+2y+7(8-y)=59,也即3x+5y=45。由此式可知x能够被5整除,y能够被3整除,而x、y均不超过8,因此x=5,代入解得y=6。甲生产零件总数为3×5+6×3=33个,乙生产零件总数为2×6+7×2=26个,两者相差7个。故答案为B。
92、爷爷的老式时钟的时针与分针每隔66分重合一次。如果早晨8点将时钟对准,到第二天早晨时钟再次指示8点时,实际是几点几分?_____
A: 8点8分B: 8点10分C: 8点12分D: 8点16分
参考答案: C 本题解释:参考答案:C题目详解:对于标准钟表:时针与分针每重合一次需要
分;则老式时钟每重合一次比标准时间慢
分;从12点开始的24时。分针转24圈,时针转2圈,分针比时针多转22圈,即22次追上时针;也就是说24时正好重合22次:所以老式时钟的时针与分针共重合了22次;所以比标准时间慢:
分;故实际时间为8点12分。所以,选C。考查点:数量关系>数学运算>特殊情境问题>钟表问题>时钟的校准问题
93、(2006北京应届,第3题)若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位,共有多少个同学?_____
A: 17B: 19C: 26D: 41
参考答案: D 本题解释:参考答案
题目详解:依题意:假设有
名学生,
条船;列方程得:
所以,选D。考查点:数量关系>数学运算>盈亏问题
94、正六面体的表面积增加96%,棱长增加多少?_____
A: 20%B: 30%C: 40%D: 50%
参考答案: C 本题解释:【答案】C。解析:根据几何等比放缩性质,表面积为原来的1.96倍时,棱长为原来的1.4倍,因此棱长增加了40%。故正确答案为C。
95、如图所示,圆O的面积为314平方米(π=3.14),平行四边形ABCD的面积为180平方米,则三角形ABO的面积是_____。
A: 49.5平方米B: 48平方米C: 47.5平方米D: 45平方米
参考答案: D 本题解释:正确答案是D解析BO=1/2BC,平行四边形面积=BC×高=180平方米,三角形面积=BO×高×1/2=BC×高×1/4=1/4平行四边形面积=45平方米,故正确答案为D。注:圆的面积是干扰项,不需要计算详细数据,只需比例转换。几何问题
96、某公司一季度有82%的人全勤,二季度有87%的人全勤,三季度有96%的人全勤,四季度有93%的人全勤。那么全年全勤的人最多占_____,最少占_____。
A: 82%,42%B: 82%,58%C: 87%,58%D: 87%,42%
参考答案: B 本题解释:B【解析】当一季度全勤的人在其他三个季度也是全勤时,全年全勤人数的比例最高,即占82%。一季度没有全勤的人数占18%,二季度没有全勤的人数占13%,三季度没有全勤的人数占4%,四季度没有全勤的人数占7%,因此全年至少有1-(18%+13%+4%+7%)=58%的人全勤,故本题答案为B。
97、把几百个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份7个余6个。这堆苹果共有多少个?_____
A: 111B: 143C: 251D: 503
参考答案: D 本题解释:参考答案:D题目详解:此题为剩余定理中差同的情况,根据"差同减差,最小公倍数做周期"可知:即苹果数加上一个,就是7、8和9的公倍数;而7、8和9的最小公倍数是504,正好在几百的范围内:因此这堆苹果有
个;所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>特殊形式>差同
98、去超市购买商品,如果购买9件甲商品,5件乙商品和1件丙商品一共需要72元。如果购买13件甲商品,7件乙商品和1件丙商品一共需要86元。若甲、乙、丙三种商品各买2件,共需要多少钱?_____
A: 88B: 66C: 58D: 44
参考答案: A 本题解释:正确答案是A考点不定方程问题解析解析1:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72,13A+7B+C=86,这是一个不定方程,可设A=0,容易解出B=7,C=37,则2(A+B+C)=88(元),故正确答案为A。解析2:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72①,13A+7B+C=86②,两个方程相减得2A+B=7③,①+②-11③=B+2C=81,故(2A+B)+(B+2C)=7+81=2A+2B+2C=88(元),故正确答案为A。
99、某公司要买100本便签纸和100支胶棒,附近有两家超市。A超市的便签纸0.8元一本,胶棒2元一支且买2送1。B超市的便签纸1元一本且买3送1,胶棒1.5元一支,如果公司采购员要在这两家超市买这些物品,他至少要花多少元钱?_____
A: 183.5B: 208.5C: 225D: 230
参考答案: B 本题解释:正确答案是B考点经济利润问题解析先考虑便签,A超市0.8元一本,而B超市3元4本(平均每本0.75元),因此100本便签可全部在B超市购买,花费25×3=75元。再考虑胶棒,A超市为4元3支(平均每支为1.33元),B超市为1.5元一支,因此胶棒尽可能多的在A超市购买,可购买99支,花费99÷3×4=132元,剩余的一支改在B超市购买,花费1.5元。总共需要75+132+1.5=208.5元。因此正确答案为B。
100、大年三十彩灯悬,灯齐明光灿灿,数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三,请你自己算一算,彩灯至少有多少盏?_____
A: 21B: 27C: 36D: 42
参考答案: A 本题解释:参考答案:A本题得分:题目详解:题干告诉我们灯的数目能整除7,被5除余数为1,被8除余数为5。方法一:代入法求解方法二:用“层层推进法”先找出满足被5除时余数为1的最小数为:5+1=6;然后在6的基础上每次都加5直到满足被8除时余数为5为止,6+5+5+5=21,21刚好能整除7,故彩灯至少有21盏;所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质