1、某年级组织一次春游,租船游湖,若每条船乘10人,则还有2人无座位;若每条船乘12人,则可少用一船,且人员刚好坐满,这时每人可节省5角钱。问租一条船需要多少钱?_____
A: 9元B: 24元C: 30元D: 36元
参考答案: D 本题解释:D【解析】 设船数为x,则10x+2=12(x-1),故x=7,所以人数为7×10+2=72,由“每人可节省5角钱”可得一条船的租金是72×5=360(角)=36(元)。
2、一袋白糖,第一次用去0.3斤,第二次用去余下的3/4,这时袋内还有白糖0.2斤,该袋糖原有多少斤?_____
A: 1.1B: 0.5C: 1.5D: 2
参考答案: A 本题解释: A 【解析】0.2÷(1-3/4)+0.3=1.1。
3、小王收购了一台旧电视机,然后转手卖出,赚取了30%的利润。1个月后,客户要求退货,小王和客户达成协议,以当时交易价格的90%回收了这台电视机,后来小王又以最初的收购价格其卖出。问小王在这台电视机交易中的利润率为_____。
A: 13%B: 17%C: 20%D: 27%
参考答案: A 本题解释:正确答案是A考点经济利润问题解析直接赋值,设收购价为100,则利润为30,出售价为130;后以90%出售价回收即117,又以收购价100卖出,亏损17;故小王在这台电视机交易中的利润率为(30-17)÷100=13%。故正确答案为A。标签赋值思想
4、某民航飞机飞行在6个民航站之间,那么共有多少种机票?_____
A: 21种B: 22种C: 28种D: 30种
参考答案: D 本题解释:正确答案是D考点排列组合问题解析从一个民航站起飞,有5种飞机票;现有6个民航站,则有5×6=30种机票。故正确答案为D。
5、(2007.国考)小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有:_____
A: 3道B: 4道C: 5道D: 6道
参考答案: D 本题解释:参考答案
题目详解:解法一:代入排除法设一共有x道题,都没答对的有y道,则有
,化简有
由于x和y都是整数,(27+y)必是11的倍数,将选项代入,只有D项符合。解法二:数的整除性质:根据“小明答对的题目占题目总数的3/4”可知,题目总数能被4整除;根据“两人都答对的题目占题目总数的2/3”可知,题目总数能被3整除。所以题目总数能被3×4=12整除。由于两人都答对的题目一定不超过27道,故题目总数应在(27,27÷2/3)范围内。所以题目总数为36(能被12整除).故两人都没有答对的题目有36-(36×3/4+27-36×2/3)=6道。因此,选D。考查点:数量关系>数学运算>计算问题之算式计算>不定方程问题>二元一次不定方程
6、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?_____
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
7、药厂使用电动研磨器将一批晒干的中药磨成药粉。厂长决定从上午10点开始,增加若干台手动研磨器进行辅助作业。他估算如果增加2台,可在晚上8点完成,如果增加8台,可在下午6点完成。问如果希望在下午3点完成,需要增加多少台手工研磨器?_____
A: 20B: 24C: 26D: 32
参考答案: C 本题解释:【答案】C。解析:设原有电动研磨器为N台,需要增X台手工研磨器,根据牛吃草公式有:Y=(N+2)10;Y=(N+8)8,解得N=22,Y=240;代入Y=(N+X)5解得X=26,故选择C选项。
8、小王和小李6小时共打印了900页文件,小王比小李快50%。请问小王每小时打印多少页文件?_____
A: 60B: 70C: 80D: 90
参考答案: D 本题解释: 【解析】D。设小王每小时打印X页,因为小王比小李快50%,则小李每小时打印为X (1-50%)页,则根据题意可列:6X (1-50%)+6X=900,则X=90。
9、(2009江苏B类,第80、C类,第19题)某大学军训,军训部将学员编成8个小组,如果每组人数比预定人数多1人,那么学员总数将超过100人,如果每组人数比预定人数少1人,那么学员总数将不到90人。由此可知,预定的每组学员人数是_____。
A: 10人B: 11人C: 13人D: 12人
参考答案: D 本题解释:参考答案
题目详解:设预定学员人数为x:根据题意,可列不等式:
化简并将两式合并:可得:
两边除以8:得:
取整,则
所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>不等式问题>由不等式确定未知量取值范围
10、用两根同样长度的铁丝分别圈成圆形和正方形,圆形面积大约是正方形面积的几倍?_____
A: 3/πB: 4/πC: 5/πD: 6/π
参考答案: B 本题解释:正确答案是B考点几何问题解析设圆的半径为r,则正方形的面积为
,圆形的面积为
,所以答案为B。
11、福州大洋百货为了庆祝春节,特举行让利百万大酬宾促销活动,在二楼打出了买300送60元的优惠活动。其中某柜台各以3000元卖出两件商品,其中盈亏均为
,则该柜台应_____。
A: 赚500元B: 亏300元C: 持平D: 亏250元
参考答案: D 本题解释:参考答案
题目详解:本题中的买300送60是迷惑条件,无用。售价都是3000,总共收入:3000×2=6000元;以3000元卖出商品的成本分别为:3000÷1.2=2500,3000÷0.8=3750;卖出这两件商品,该柜台利润为:3000×2-(3750+2500)=-250元。所以,选D。考查点:数量关系>数学运算>利润利率问题>成本、售价、利润、利润率之间的等量关系问题
12、1992是24个连续偶数的和,问这24个连续偶数中最大的一个是几?_____
A: 84B: 106C: 108D: 130
参考答案: B 本题解释:正确答案是B考点数列问题解析解析1:24个连续的偶数是公差为2的等差数列。设最大的偶数为x,则最小的偶数是x-(24-1)×2,由题意得(x+x-23×2)×24÷2=1992,解得x=106,故正确答案为B。解析2:24个连续偶数构成公差为2的等差数列,因此其中位数为1992÷24=83,故最大的数为83+1+(24-13)×2=106,正确答案为B。
13、长为1米的细绳上系有一个小球,从A处放手以后,小球第一次摆到最低点B处共移动了多少米?_____
A: 1+(1/3)πB: 1/2+(1/2)πC: (2/3)πD: 1+(2/3)π
参考答案: A 本题解释:正确答案是A考点几何问题解析
备注:本题中所求长度的线条即有线段与圆弧两部分组成,正确把握分界点是解题关键。考题中的分界点一般与物理常识相关。
14、_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B考点计算问题解析
标签平方差公式
15、某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为_____。
A: 5:4:3B: 4:3:2C: 4:2:1D: 3:2:1
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。秒杀技得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。标签直接代入
16、有一批书要打包后邮寄,要求每包内所装书的册数都相同,用这批书的7/12打了14个包还多35本,余下的书连同第一次多的零头刚好又打了11包,这批书共有多少本?_____
A: 1000B: 1310C: 1500D: 1820
参考答案: C 本题解释: C 解析: 由已知条件,全部书的7/12打14包还多35本,可知全部书的1/12打2包还多5本,即全部书的5/12打10包还多25本,而余下的是5/12加35本打11包。所以,(35+25)÷(11-10)=60本,1包是60本,这批书共有(14+11)×60=1500(本)。故本题正确答案为C。
17、2010年某种货物的进口价格是15元/公斤,2011年该货物的进口量增加了一半,进口金额增加了20%。问2011年该货物的进口价格是多少元/公斤?_____
A: 10B: 12C: 18D: 24
参考答案: B 本题解释:正确答案是B考点经济利润问题解析假设2010年进口了2公斤,2010年进口金额是30元,2011年进口了3公斤,进口金额是30×(1﹢20%)=36,因此2011年进口价格是36÷3=12元/公斤,故正确答案为B。标签赋值思想
18、_____
A: 32B: 33C: 34D: 35
参考答案: B 本题解释:正确答案是B考点余数与同余问题解析
19、一果农想将一块平整的正方形土地分割为四块小的正方形土地,并将果树均匀整齐地种植在土地的所有边界上,且在每块土地的四个角上都种上一棵果树。该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那么他至少多买了多少棵果树?_____ B: 3C: 6D: 15
参考答案: B 本题解释:正确答案是B考点不等式分析问题解析将大正方形分割成4块小正方形后,该图有9个顶点,12条边,设每条边不含顶点种n棵果树且n为自然数,则有共种植(12n+9)棵果树。根据题意可得:12n+9≤60,即求符合不等式n的最大正整数,从而可发现当n=4时,共种植57棵果树,最接近60,因此至少多买了3棵果树,故正确答案为B。
20、国庆阅兵大典,参演学生组成一个方阵,已知方阵由外到内第二层有120人,则该方阵共有学生多少人?_____
A: 625B: 841C: 1024D: 1089
参考答案: D 本题解释:参考答案
题目详解:方阵由外到内第二层有120人:最外层有
人;根据公式:最外边的人数为
人.则整个方阵有:
人;所以,选D。考查点:数量关系>数学运算>特殊情境问题>方阵问题>实心方阵问题
21、某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果。现将苹果个数相同的箱子算作一类。设其中箱子数最多的一类有
个箱子,则
的最小值为多少?_____
A: 4B: 5C: 6D: 7
参考答案: C 本题解释:参考答案:C题目详解:解法一:将苹果个数相同的箱子算成一类,那么每一类都可以看成一个“抽屉”。这样可以构造出144-120+1=25个抽屉,又由于:126÷25=5…1,由抽屉原理2可以得到,
。解法二:每箱数目是120—144,共有25种可能。又因126=5×25+1,故至少有5+1=6(个)装相同苹果数的箱子,即
最小为6.考查点:数量关系>数学运算>抽屉原理问题>抽屉原理2
22、今年某高校数学系毕业生为60名,其中70%是男生,男生中有1/3选择继续攻读硕士学位,女生选择攻读硕士学位的人数比例是男生选择攻读硕士学位人数比例的一半,那么该系选择攻读硕士学位的毕业生共有_____。
A: 15位B: 19位C: 17位D: 21位
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析根据题意,毕业生中有30%是女生,攻读硕士学位的占1/6,因此该系攻读硕士学位的毕业生共有60×70%×1/3+60×30%×1/6=17位,故正确答案为C。
23、某办公室5人中有2人精通德语。如从中任意选出3人,其中恰有1人精通德语的概率是多少?_____
A: 0.5B: 0.6C: 0.7D: 0.75
参考答案: B 本题解释:【答案】B。
24、
_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B考点计算问题解析
故正确答案为B。
25、小李开了一个多小时会议,会议开始时看了手表,会议结束时又看了手表,发现时针与分针恰好互换了位置。问这次会议大约开了1小时多少分?_____
A: 51B: 47C: 45D: 43
参考答案: A 本题解释:A。时针和分针正好互换了位置,说明两针一共转了720度。因为时针每分钟转过0.5度,分针每分钟转过6度,所以720÷(6+0.5)≈110.7分,约为l小时51分。
26、某专业有学生50人,现开设有甲、乙、丙三门选修课。有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?_____
A: 1人B: 2人C: 3人D: 4人
参考答案: B 本题解释:正确答案是B考点容斥原理问题解析设选修甲课程的为集合A,选修乙课程的为集合B,选修丙课程的为集合C,根据三集合容斥原理公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C,可得A∪B∪C=40+36+30-28-26-24+20=48,即至少选一门课的有48人,因此三门课程均未选的有:50-48=2,故选择B选项。秒杀技
27、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:C解析:6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷1/5=30(厘米)故本题选C。
28、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法? _____
A: 7B: 9C: 10D: 12
参考答案: C 本题解释:【解析】C。每个部门的材料数分布情况 不同的分法数目(9,9,12) 3(9,10,11) 6(10,10,10) 1所以共有10种。
29、有一些数字卡片,卡上的数字都是3、5或者15的倍数,其中是3的倍数的卡片占到总数的2/3,5的倍数的卡片占到总数的3/4,15的倍数的卡片共有15张,那么这些卡片一共有多少张?_____
A: 12B: 24C: 36D: 48
参考答案: C 本题解释:【答案】C。解析:根据题意,卡片上的数字是15倍数的卡片占2/3+3/4-1=5/12,则共有卡片15÷5/12=36张。
30、某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?_____
A: 88B: 89C: 90D: 91
参考答案: B 本题解释:正确答案是B考点多位数问题解析要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。
31、有一个整数,用它分别去除157、324和234,得到的三个余数之和是100,求这个整数。_____
A: 44B: 43C: 42D: 41
参考答案: D 本题解释:直接代入验证即可。选D。
32、(2003国家,A类,第8题)某剧场共有100个座位,如果当票价为10元时,票能售完,当票价超过10元时,每升高2元,就会少卖出5张票。那么当总的售票收入为1360元时,票价为多少元?_____
A: 12元B: 14元C: 16元D: 18元
参考答案: C 本题解释:参考答案:C题目详解:解法一:根据票价和人数的关系,将选项代入,容易得到下表:
注意到总的票价收入应该既是单价的倍数,又是人数的倍数。则表中第一、二、四列的12,90,18都含有3因子,但1360没有3因子,排除A、B、D,选择C。解法二:总售票收入1360元应该是票价的倍数,由此排除A、B、D,选择C。考查点:数量关系>数学运算>特殊情境问题>分段计算问题
33、一个正三角形和一个正六边形周长相等,则正六边形面积为正三角形的:_____
A: AB: BC: CD: D
参考答案: B 本题解释:答案:B.[解析]本题为几何类题目。因为正三角形和一个正六边形周长相等,又正三角形与正六边形的边的个数比为1︰2,所以其边长比为2︰1,正六边形可以分成6个小正三角形,边长为1的小正三角形面积:边长为2的小正三角形面积=1︰4。所以正六边形面积:正三角形的面积=1×6/4=1.5。所以选B。
34、一个班里有30名学生,有12人会跳拉丁舞,有8人会跳肚皮舞,有10人会跳芭蕾舞。问至多有几人会跳两种舞蹈?_____
A: 12人B: 14人C: 15人D: 16人
参考答案: C 本题解释:正确答案是C考点统筹规划问题解析要使会跳两种舞蹈的人最多,则尽量在三种舞蹈之间进行匹配,使得两两匹配的人数之和最多。因此就不能将一种舞蹈只与另一种舞蹈进行全额匹配,例如不能将会跳肚皮舞的8人全部与拉丁舞匹配。实际上,为实现两两匹配的最多,则每组用于匹配的人数应相等或接近。从最少人数出发,会跳肚皮舞的8人,将其划分时要考虑拉丁舞和芭蕾舞人数相差2,故在划分此8人时注意这一点,可将8人划分为5人和3人。其中5人除了会肚皮舞之外,还会拉丁舞;3人会肚皮舞之外还会芭蕾舞。此时拉丁舞与芭蕾舞还各自剩7人、7人,又可以匹配得到7人既会拉丁舞又会芭蕾舞。会跳两种舞的人数至多为15人。故正确答案为C。秒杀技假定拉丁+肚皮、肚皮+芭蕾、芭蕾+拉丁的人数分别为x、y、z,则根据题意可知x+y≤8,x+z≤12,y+z≤10,求取x+y+z的最大值。对于前述三个不等式,先将不等号变为等号尝试求解一下,恰好可得x=5,y=3,z=7,代回验证可知所有条件均满足。因此可知x+y+z的最大值为15。故正确答案为C。标签构造调整
35、在1至1000的1000个自然数中,既不是4的倍数,也不是6的倍数的数共有多少个?_____
A: 375B: 416C: 625D: 791
参考答案: C 本题解释:C【解析】1000÷4=250(个),所以1至1000中4的倍数的数有250个。1000÷6=166……4,所以1至1000中6的倍数的数有166个。1000÷(4×6)=41……16,说明1至1000中既是4的倍数,又是6的倍数的数有41个。即4的倍数的个数与6的倍数的个数的交集有41个,如图所示。所以1至1000中,既是4的倍数,也是6的倍数的数共有209+125+41=375(个)。则1至1000中,既不是4的倍数,也不是6的倍数的数共有:1000-(209+125+41)=1000-375=625(个)。故本题选C。
36、某单位举行“庆祝建党90周年”知识抢答赛,总共50道抢答题。比赛规定:答对1题得3分,答错1题扣1分,不抢答得0分。小军在比赛中抢答了20道题,要使最后得分不少于50分,则小军至少要答对_____道题。
A: 16B: 17C: 18D: 19
参考答案: C 本题解释:假设答对2题,取最坏情形,剩下都答错,则答错20—x题,总分不少于50则有3x-(20-z)≥50,求得x≥17.5,取最小值为18。
37、6个空瓶可以换一瓶汽水,某班同学喝了157瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买多少瓶汽水?_____
A: 131B: 130C: 128D: 127
参考答案: A 本题解释:正确答案是A考点计数模型问题解析典型的空瓶换水问题,根据等价公式,6个空瓶可换一瓶水→6空瓶=1瓶水+1空瓶→5空瓶=1瓶水。设买了x瓶汽水,有x+x/5=157,解得x=130.8,取整得x=131,即至少要买131瓶水,故正确答案为A。等价公式:若M个空瓶换一瓶水,相当于M-1个空瓶可以喝到1瓶水。
38、光的速度是每秒30万千米,太阳离地球1亿5千万千米。问:光从太阳到地球要用几分钟?_____
A: 83B: 12C: 7.2D: 20
参考答案: A 本题解释:【答案】A。解析:150000000÷300000÷60=150÷3÷6=50÷6=8.3(分)。故应选择A。
39、(100+99)(100-99)+(99+98)(99-98)+(98+97)(98-97)+……+(2+1)(2-1)的值是多少?_____
A: 10100B: 9999C: 10000D: 5050
参考答案: B 本题解释:正确答案是B考点计算问题解析
秒杀技观察加式中的每一项都为奇数,一共99项,故加和为奇数,只有B符合,故正确答案为B。标签平方差公式
40、某地收取手机费的标准是:每月打电话不超过30分钟,每分钟收费5角;如果超出30分钟,超出部分按每分钟7角收费。已知某月甲比乙多交了3元3角的手机费,则该月甲、乙两人共打了多少分钟电话?_____
A: 63B: 62C: 61D: 60
参考答案: A 本题解释:如果甲、乙两人打电话都超过30分钟,那么相差的电话费就应该是7的倍数,显然33不是7的倍数;如果甲、乙两人打电话都没超过30分钟,那么相差的电话费就应该是5的倍数,显然33不是5的倍数,因此只有一种情况:甲超过了30分钟,乙未达到30分钟。因为只有33=5×1+7×4一种情况满足题意,故甲打电话时间为30+4=34(分钟),乙打电话时间为30一1=29(分钟),甲、乙两人共打了34+29=63(分钟)。故选A。
41、将一块三角形绿地沿一条直线分成两个区域,一块为三角形,一块为梯形,已知分出的三角形区域的面积为1.2亩,梯形区域的上、下底边分别为80米、240米,问分出的梯形区域的面积为多少亩?_____
A: 9.6B: 11.2C: 10.8D: 12.0
参考答案: A 本题解释:A。
42、某供销社采购员小张买回一批酒精,放在甲、乙两个桶里,两个桶都未装满。如果把甲桶酒精倒入乙桶,乙桶装满后,甲桶还剩10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升。已知甲桶容量是乙桶的2.5倍,那么,小张一共买回多少升酒精?_____
A: 28B: 41C: 30D: 45
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设甲桶容量为x升,乙桶容量为y升,根据题意可得:y+10=x-20,x=2.5y,解得x=50,y=20,则酒精总量为y+10=30,故正确答案为C。
43、有41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次?_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:套用公式,过河次数=(41-1)/(4-1)=13.33,过河次数为整数,13<13.33<14,要使所有人都过河,只能取14。所求次数为单程次数,来回总共14×2-1=27次(最后一次过河不再返回)。故正确答案为C。公式:过河问题中每次过河都需要有一个人将船划回来,而最后一次过河不再需要划回来。N个人过河,船最多载M人,则过河次数为(N-1)/(M-1)。过河次数指单程次数,注意最后一次过河不需要人划回来,总次数=单程次数×2-1。
44、某区中学生足球联赛共赛8轮(每队均需赛8场)。规则是:胜一场得3分;平一场得1分;负一场得0分。在这次联赛中,A队踢平场数是所负场的2倍,共得17分。问该队胜了几场?_____
A: 2B: 3C: 4D: 5
参考答案: D 本题解释:参考答案
题目详解:设胜了
场,负了
场:
;
;
,
;胜了5场;所以,选D。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛
45、一个9×11个小矩形组成的大矩形一共有多少个矩形? _____
A: 2376B: 1188C: 2970D: 3200
参考答案: C 本题解释:C【解析】矩形是由横向2条平行线,纵向2条平行线相互垂直构成的。9×11的格子,说明是10×12条线。所以我们任意在横向和纵向上各取2条线就能构成一个矩形。答案就是 C10取2×C12取2=2970。
46、已知
,则
的值是_____
A:
B:
C:
D:
参考答案: D 本题解释:参考答案
题目详解:观察可知14.84是7.42的2倍,则原式整理为
则
解得
。所以,选D考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题
47、现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有_____。
A: 9B: 10C: 11D: 12
参考答案: B 本题解释:【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。
48、一个三位数的各位数字之和是16。其中十位数字比个位数字小3。如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大495,则原来的三位数是多少?_____
A: 169B: 358C: 469D: 736
参考答案: B 本题解释:正确答案是B考点多位数问题解析将各项直接代入,只有B项符合,可直接得出B项正确。标签直接代入
49、现有一个无限容积的空杯子,先加人1克酒精,再加入2克水,再加入3克酒精,再加人4克水,……,如此下去,问最终杯子中酒精溶液浓度为多少?_____ B:
C:
D:
参考答案: D 本题解释:参考答案
题目详解:把加一次酒精和水看成一个流程:则经过
个流程后,杯子里面有
克酒精,而酒精溶液有:
克。故此时酒精溶液浓度为:
=
;当n趋于无穷大时,溶液浓度趋于
,即
。所以,选D。考查点:数量关系>数学运算>浓度问题>不同溶液混合
50、某招聘会在入场前若干分钟就开始排队,每分钟来的求职人数一样多,从开始入场到等候入场的队伍消失,同时开4个入口需30分钟,同时开5个入口需20分钟。如果同时打开6个入口,需多少分钟?_____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:牛吃草问题。假定原有人数n人、每分钟新增人数x人,则可得:n=(4一x)×30,n=(5一x)×20,解得x=2,n=60。将6个入口代入,可得所需时间为60÷(6-2)=15(分钟)。故选D。
51、小赵、小钱、小孙、小李、小周五个人的收入依次成等比,已知小赵的收入是3000元,小孙的收入是3600元,那么小周比小孙的收入高_____。
A: 700元B: 720元C: 760元D: 780元
参考答案: B 本题解释:正确答案是B考点数列问题解析5人收入成等比数列,则第一、三、五个人收入也成等比数列,因此小周的收入为3600×3600÷3000=4320元,比小孙高4320-3600=720元。故正确答案为B。
52、校对一份书稿,编辑甲每天的工作效率等于编辑乙、丙每天工作效率之和,丙的工作效率相当于甲、乙每天工作效率之和的1/5。如果三人一起校对只需6天就可完成。现在如果让乙一人单独校对这份书稿,则需要_____天才能完成。
A: 20B: 16C: 24D: 18
参考答案: D 本题解释:D 解析:三人一起完成校对需要6天,那么三人每天的效率之和是1/6。因为甲每天的工作效率等于乙、丙每天工作效率之和,那么甲的工作效率为1/12,乙、丙的效率和也是1/12。设乙单独完成校对需要x天,那么根据题意可得到方程:1/12-1/x=(1/12+1/x)×1/5解得x=18,即乙单独完成校对需要18天,正确答案为D。
53、某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少_____
A: 赚了12元B: 赚了24元C: 亏了14元D: 亏了24元
参考答案: D 本题解释:答案:D 解析:根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
54、甲地到乙地,步行比骑车速度慢75%,骑车比公交慢50%,如果一个人坐公交从甲地到乙地共用1个半小时,问:骑车从甲地到乙地多长时间? _____
A: 10分钟B: 20 分钟C: 30分钟D: 40分钟
参考答案: B 本题解释:B。设骑车的速度为x公里/小时,则步行速度为0.25x公里/小时,公车的速度为2x公里/小时。设甲乙两地距离为L公里,则L/0.25x+L/2x=1.5,得到L/x=1/3小时=20分钟,则骑车从甲地到乙地需20分钟。
55、甲以每小时6千米的速度步行从A地前往B地,在甲出发90分钟时,乙发现甲落下了重要物品,立即骑自行车以每小进12千米的速度追甲,终于在上午11点追上了甲。问甲出发时间是上午几点? _____
A: 7 B: 8 C: 9 D: 10
参考答案: B 本题解释:B。追及路程为6×1.5=9千米,甲乙速差为12-6=6千米/小时,则乙追上甲需要9÷6=1.5小时。因此甲出发时间是早上8点。故选B项。
56、市A公路收费站,去年的收费额比今年的收费额少1/5,估计明年收费额比今年的收费额多1/6,那么明年的收费额估计要比去年的收费额多几分之几?_____
A: 11/24B: 11/25C: 11/30D: 11/60
参考答案: A 本题解释:A。设今年30,则去年是24,明年是35,则明年比去年多了(35-24)/24=11/24,选A。
57、1.31×12.5×0.15×16的值是_____。
A: 39.3B: 40.3C: 26.2D: 26.31
参考答案: A 本题解释:答案:A【解析】本式可写为1.31×12.5×4×0.15×4。
58、某旅游团48人到公园里去划船,如果每只小船可坐3人,每只大船可坐5人,以下为小船和大船的数量,哪种情况下不能正好坐满?_____
A: 1,9B: 6,6C: 11,3D: 8,5
参考答案: D 本题解释:参考答案
题目详解:设小船和大船数量分别为x、y,则有:3x+5y=48;48为偶数,根据数字的奇偶性运算规律可知,3x、5y的奇偶性相同,若3x为奇数,则5y也为奇数,可得x为奇数,y也为奇数,若3x为偶数,则5y也为偶数,可得x为偶数,y也为偶数。即x与y同奇或同偶,观察选项,只有D项不符合,所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>不定方程问题>二元一次不定方程
59、某企业调查用户从网络获取信息的习惯,问卷回收率为90%,调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网站获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷:_____
A: 310B: 360C: 390D: 410
参考答案: D 本题解释:正确答案是D,解析:根据题意,收回问卷
,则所求为
。故正确答案为D。考点:容斥原理问题
60、41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:4个人渡过去,1个人回来,因此每2次渡河可以渡过去3个学生.41=3×13+2,因此一共需要13×2+1=27次。
61、一个数能被3、5、7整除,若用11去除这个数则余1,这个数最小是多少?_____
A: 105B: 210C: 265D: 375
参考答案: B 本题解释:B。这个数能被3、5、7整除,因此这个数是105的倍数.若这个数是105,105除以11的余数是6,不符合题意;若这个数是105×2=210,210除以11的余数是1,满足题意。因此这个数最小是210。
62、(1.2)2+(1.3)2+(1.4)2+(1.5)2的值是_____。
A: 6.30 B: 6.49 C: 7.56 D: 7.34
参考答案: D 本题解释:D。本题可采用尾数法,(1.2)2尾数为4,(1.3)2尾数为9,(1.4)2尾数为6,(1.5)2尾数为5,4+9+6+5尾数为4,所以正确答案为D项。
63、某学校组织学生春游,往返目的地时租用可乘坐10名乘客的面包车,每辆面包车往返的租金为250元。此外,每名学生的景点门票和午餐费用为40元,如果求尽可能少租车,则以下哪个图形最能反映平均每名学生的春游费用支出与参加人数之间的关系:_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B,解析方法一:分段表示平均费用和总人数之间的关系,设人数为
。当人数
在
之间时,总的费用为
,平均费用为
,这是一个双曲线;当人数
在
之间时,总费用变成
,平均费用为
,左节点明显大于上一个区间的右节点的,之后的区间类似,故答案选择B选项。方法二:结合图形,代入人数等于1、10、11大致判断。故正确答案为B。
64、某商场以摸奖的方式回馈顾客,盒内有五个乒乓球,其中一个为红色,2个为黄色,2个为白色,每位顾客从中任意摸出一个球,摸到红球奖10元,黄球奖1元,白球无奖励,则每一位顾客所获奖励的期望值为多少?_____
A: 10B: 1.2C: 2D: 2.4
参考答案: D 本题解释:正确答案是D考点概率问题解析根据已知,每一位顾客所获奖励的期望值为10×1/5+1×2/5=2.4,故正确答案为D。
65、甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?_____
A: 6B: 7C: 8D: 9
参考答案: A 本题解释:正确答案是A考点工程问题解析解析1:根据题目给出的效率比,直接赋值三个工程队的效率分别为6、5、4,并假设丙队参与A工程Y天,则根据题意可得6×16+4Y=5×16+4(16-Y),解得Y=6。故正确答案为A。解析2:根据题目中的效率比,直接赋值三个工程队的效率分别为6、5、4,将两工程合在一起看整体,则三个工程队一天的工作量为6+5+4=15,则16天的总工作量为15×16=240,于是A工程的工作量为120,其中甲完成了6×16=96,则丙需要参与(120-96)÷4=6天。故正确答案为A。秒杀技秒杀1:将效率比看做份数,甲比乙每天多1份,16天则多16份,而丙一天完成4份,因此完成这16份需要4天,也即丙参与A工程比参与B工程少4天,于是参与A工程的天数为(16-4)÷2=6天。故正确答案为A。秒杀2:由题意甲效率高于乙效率,因此丙必然在甲中参与天数少于16天的一半,也即答案只在A、B中选择,这两个选项中,优先考虑代入A选项验证,符合条件,故正确答案为A。标签直接代入赋值思想
66、100张多米诺骨牌整齐地排成一列,依顺序编号为1、2、3……99,100.第一次拿走所有奇数位置上的骨牌,第二次再从剩余骨牌中拿走所有奇数位置上的骨牌,依此类推。请问最后剩下的一张骨牌的编号是多少?_____
A: 32B: 64C: 88D: 96
参考答案: B 本题解释:B。【解析】本题关键是理解题意,第一次拿走的是所有奇数,第二次拿走的各项是2分别乘以1、3、5、7、9……,依次类推,每拿走一次后,剩下的第一个数是20、21,22、23、24……,在100之内要使2n取值最大,所以最后剩下的是64,选B。
67、两辆汽车同时从某地出发到同一目的地,路程180千米。甲车比乙车早到0.8小时。当甲车到达目的地时,乙车离目的地32千米。甲车行驶全程用了_____小时。
A: 3.5B: 3.7C: 4D: 4.5
参考答案: B 本题解释:【解析】乙车的速度为32÷0.8=40千米/小时,则乙车行驶全程用了180÷40=4.5/小时,故甲行驶全程用了4.5-0.8=3.7小时。
68、有一种长方形小纸板,长为19毫米,宽为11毫米。现在用同样大小的这种小纸板拼合成一个正方形,问最少要几块这样的小纸板拼合成一个正方形,问最少要几块这样的小纸板?_____
A: 157块B: 172块C: 209块D: 以上都不对
参考答案: C 本题解释:参考答案:C题目详解:本题可转化为:求19与11的最小公倍数,即为:19×11=209;则组成正方形的边长为209,从而可得组成正方形的小纸板数为:
;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
69、某医院有一氧气罐匀速漏气,该氧气罐充满后同时供40人吸氧,60分钟后氧气耗尽,再次充满该氧气罐同时供60个人吸氧,则45分钟后氧气耗尽。问如果该氧气罐充满后无人吸氧,氧气耗尽需要多长时间?_____
A: 1.5小时B: 2小时C: 2.5小时D: 3小时
参考答案: D 本题解释:正确答案是D考点牛吃草问题解析这是一个变形的牛吃草问题。设原有氧气为M,漏气速度为V,则可得(40+V)×60=(60+V)×45=M,解得V=20,M=3600,如果没人吸氧,则可得耗尽的时间为3600÷20=180分钟,即3小时。故正确答案为D。
70、某市一条大街长7200米,从起点到终点共设有9个车站,那么每个车站之间的平均距离是_____。
A: 780米B: 800米C: 850米D: 900米
参考答案: D 本题解释:正确答案是D考点计数模型问题解析该问题为计数模型中的植树问题。车站间的平均距离为7200÷(9-1)=900。故正确答案为D。
71、一个袋子里放着各种颜色的小球,其中红球占1/4,后来又往袋子里放了10个红球,这时红球占总数的2/3,问原来袋子里有多少个球?_____
A: 8B: 12C: 16D: 20
参考答案: A 本题解释:正确答案是A考点容斥原理问题解析解析1:设原来有小球a个,则有:(a/4+10)÷(a+10)=2/3,解得a=8秒杀技秒杀1:由于后来又往袋子里放了10个红球,这时红球占总数的2/3,所以原来小球的数目必须是三的倍数,四个答案中只有8和20,再把两个答案分别代入原来的题目中,解得满足条件的为8,所以答案选A。标签数字特性
72、某市气象局观测发现,今年第一、二季度本市降水量分别比去年同期增加了11%和9%,而两个季度降水量的绝对增量刚好相同。那么今年上半年该市降水量同比增长多少?_____
A: 9.5%B: 10%C: 9.9%D: 10.5%
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析解析1:设绝对增长量是X,则今年上半年的增长量是2X,去年的降水量是X/11%+X/9%,同比增长=2X/(X/11%+X/9%)=9.9%,故正确答案为C。解析2:
标签十字交叉法
73、长方形ABCD的面积是72平方厘米,E、F分别是CD、BC的中点,三角形AEF的面积是多少平方厘米?_____
A: 24B: 27C: 36D: 40
参考答案: B 本题解释:正确答案是B考点几何问题解析三角形AEF虽然为规则几何图形,但不是特殊的三角形,且三边值未知,若正面求解较为麻烦。从逆向考虑,注意到△AEF可以看作长方形依次去除周围三个三角形得到。由比例关系可知,△ABF为长方形的1/4,△ADE为长方形的1/4,而△ECF为长方形的1/8,因此△AEF为长方形大小的3/8,故可知其面积为27,故正确答案为B。标签逆向考虑
74、某单位举办庆国庆茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量。那么原来每箱苹果重多少千克?_____
A: 16B: 24C: 32D: 36
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析解析1:设原来每箱苹果重x千克,根据题意可得:4(x-24)=x,解得x=32,故选择C选项。解析2:原来一共4箱苹果,由“从每箱取出24千克后,结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量”,可知总共取出来的苹果重量是原来3箱苹果的重量,因此原来每箱苹果的重量为:24×4÷3=32,故选择C选项。
75、新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分,结果发现总有两个人取的球颜色相同。由此可知,参加取球的至少有_____人。
A: 13B: 14C: 15D: 16
参考答案: D 本题解释:【解析】摸出两个球,两球的颜色不同的情况有C25=10种,两个球的颜色相同的情况有5种,共有15种情况,所以至少有16人。
76、实行“三统一”社区卫生服务站卖药都是“零利润”。居民刘某说“过去复方降压片卖3.8元,现在才卖0.8元;藿香正气水以前2.5元,现在降了64%。另外两种药品也分别降了2.4元和3元。”问这四种药平均降了_____
A: 3.5元B: 1.8元C: 3元D: 2.5元
参考答案: D 本题解释: 【解析】D。藿香正气水降价2.5×64%=1.6元,则四种药平均降价(3.8-0.8+1.6+2.4+3)÷4=2.5元。
77、小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时问是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度。_____
A: 300米,20公里/时B: 250米,20米/秒C: 300米,720公里/时D: 300米,20米/秒
参考答案: D 本题解释:参考答案
题目详解:依题意:小英的记录是:车从小英面前通过走了一个车长的路程;小明记录的则是:走一个车身外加两根电线杆间距的距离;由此可知:火车走两根电线杆间距的时间是
秒,因此它的速度是
米/秒。火车长为
米。所以,选D。考查点:数量关系>数学运算>行程问题>初等行程问题
78、根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是_____。
A: 周一或周三B: 周三或周日C: 周一或周四D: 周四或周日
参考答案: D 本题解释:正确答案是D考点星期日期问题解析8月份为31天,有22个工作日,则休息日有9天,而31天大于四周小于五周,故有两种情况:①1号为周日,保证休息日为1+2×4=9天;②31号为周六,保证休息日为2×4+1=9天,则3号为周六,此时1号为周四。故正确答案为D。标签分类分步
79、一群人坐车旅游,每辆车坐22人,剩5人没有座位,每辆坐26人,空出5个座位, 问每辆车坐25人,空出多少座位? _____
A: 20B: 15C: 10D: 5
参考答案: C 本题解释: C。一盈一亏型,车的数量为(15+5)÷ (26-22)=5,则共有5×22+5=115人。则坐25人时,115 ÷ 25=4……15,即需要5辆车,空出25-15=10个座位。
80、计算:(1×2×3+2×4×6+…+100×200×300)/(2×3×4+4×6×8+…+200×300×400)的值为_____。
A: 1/8B: 1/4C: 3/2D: 5/4
参考答案: B 本题解释:B【解析】分析分子部分每个加数(连乘积)的因数,可以发现前后之间的倍数关系,从而把“1×2×3”作为公因数提到前面,分母部分也做类似的变形。原式=1×2×3+8×(1×2×3)+…+1000000×(1×2×3)2×3×4+8×(2×3×4)+…+1000000×(2×3×4)=[1×2×3×(1+8+…+1000000)]/[2×3×4×(1+8+…+1000000)]=(1×2×3)/(2×3×4)=1/4因此,本题正确答案为B。
81、超市规定每3个空汽水瓶可以换一瓶汽水,小李有11个空汽水瓶,最多可以换几瓶汽水_____。
A: 5B: 4C: 3D: 2
参考答案: A 本题解释:正确答案是A考点计数模型问题解析3个空瓶换1瓶水,因此3空瓶=1汽水+1空瓶,可以得出等价公式:2空瓶=1汽水,因此小李的11个空汽水瓶可以换5瓶汽水。故正确答案为A。
82、1980年,爸爸的年龄是哥哥和弟弟年龄和的4倍;1988年,爸爸的年龄是哥哥和弟弟年龄和的2倍;那么,爸爸出生在哪一年?_____
A: 1932B: 1928C: 1930D: 1936
参考答案: A
83、某企业有员工500人,其中60%的员工是男性,则该企业男员工比女员工多_____人。
A: 100B: 200C: 300D: 400
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析由题意可得,男性比女性多500×60%-500×40%=100人。故正确答案为A。
84、某校图书馆新购进120本图书,其中教育学类书60本,心理学类40本,有30本既不属于教育学类也不属于心理学类,则这批书中教育心理学书有多少本?_____
A: 10B: 20C: 30D: 40
参考答案: A 本题解释:A【解析】设教育心理学书购进X本。则根据两集合容斥原理核心公式可得︰60+40-x=120-30x=10,故答案为A选项。
85、某市财政局下设若干处室,在局机关中不是宣传处的有206人,不是会计处的有177人,已知宣传处与会计处共有41人,问该市财政局共有多少人?_____
A: 218 B: 247C: 198D: 212
参考答案: D 本题解释: 【解析】由题意有:
人。所以选D。
86、某高校有A、B两个食堂,开学第一天A食堂就餐人数为8000,但其中20%在第二天流失到B食堂就餐,同时,第一天在B食堂就餐者有30%于第二天流失到A食堂,如果第二天两食堂就餐人数相同,则第一天B食堂人数为多少?_____
A: 10000B: 11000C: 12000D: 13000
参考答案: C 本题解释:正确答案是C考点计算问题解析根据题意,设第一天B食堂人数为m,则有8000×(1-20%)+m×30%=m×(1-30%)+8000×20%,解之得m=12000。故正确答案为C。
87、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】选取中间值法,所有分数都接近1/2,1/2-4/9=1/18,1/2-17/35=1/70,1/2-101/203=1/406,1/2-3/7=1/14,1/2-151/301=-1/602,显然151/301大于1/2,故选D。
88、小刚和小强租一条小船,向上游划去,不慎把空塑料水壶掉进江中,当他们发现并掉过头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?_____
A: 0.2小时B: 0.3小时C: 0.4小时D: 0.5小时
参考答案: D 本题解释:参考答案:.D题目详解:此题是水中追及问题,已知路程差是2千米,船在顺水中的速度是船速+水速。水壶漂流的速度只等于水速,所以速度差=船顺水速度-水壶漂流的速度=(船速+水速)-水速=船速。路程差÷船速=追及时间2÷4=0.5(小时)。所以,选D考查点:数量关系>数学运算>行程问题>行船问题>基本行船问题
89、(江苏2009B类-80,C类-19)某大学军训,军训部将学员编成8个小组,如果每组人数比预定人数多一人,那么学员总数将超过100人,如果每组人数比预定人数少1人,那么学员总数将不到90人。由此可知。预定每组学员人数是_____
A: 10人B: 11人C: 13人D: 12人
参考答案: D 本题解释:参考答案
题目详解:假设预定每组学员为x人,那么:
所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>不等式问题>由不等式确定未知量取值范围
90、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
91、一本100多页的书,被人撕掉了4张,剩下的页码总和为8037,则该书最多有多少页?_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:正确答案是A考点数列问题解析撕掉一张纸,其正反两面的两个页码之和为奇数,则撕掉4张,页码总数必为偶数,剩余页码和为8037,所以原书的页码总和必然为奇数,由此排除BD(BD选项能被4整除,而连续4页的页码和必然为偶数)。代入C,可知整书的页码总和为(1+138)÷2×138=9591,于是撕掉的页码和为9591-8037=1554,那么撕掉的8页的页码平均值为194.25,显然与最多138页矛盾。故正确答案为A。
92、(2004国家A类,第38题)
的个位数字是_____。
A: 1B: 2C: 3D: 7
参考答案: D 本题解释:参考答案
题目详解:应用首尾数法:
所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>速算与技巧>首尾数法
93、有1角、2角、5角和1元的纸币各l张,现从中抽取至少1张,问可以组成不同的几种币值?_____
A: 4B: 8C: 14D: 15
参考答案: D 本题解释:参考答案
题目详解:从四种不同的纸币中任意抽取至少一张:那么可以抽取l、2、3、4张共4种情况,那么应用组合公式:则可以组成
种币值。所以,选D。考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
94、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升
,问收割完所有的麦子还需要几天:_____
A: 3B: 4C: 5D: 6
参考答案: D 本题解释:正确答案是D,解析:设每台收割机每天的工作效率为1,则工作总量为
,剩下的
由
收割机完成,每台收割机效率为1.05,故剩下需要的时间为
。故正确答案为D。考点:计算问题
95、在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是_____。
A: 1644B: 1779C: 3406D: 3541
参考答案: D 本题解释:【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。
96、地上放着一个每一面上都有一个数的六面体箱子,对面两个数的和均为27。甲能看到顶面和两个侧面,这三个面上的数字之和是35;乙能看到顶面和另外两个侧面,且这三个面上的数字和为47。箱子贴地一面的数字是:_____
A: 14B: 13C: 12D: 11
参考答案: B 本题解释:参考答案:B题目详解:先求出顶面的数字:甲、乙二人看到的数加起来一共为:2组对面加上2倍的顶面数字;则顶面的数字为:(35+47-27×2)÷2=14;根据对面两个数的和均为27:底面的数字为:
;所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
97、西南赛区四支球队为了争夺小组第一名而进行小组循环赛,已知小马队已比赛了3场,小熊队已比赛了2场,小龙队已比赛了1场,问小牛队比赛了几场_____
A: 3B: 2C: 1
参考答案: B 本题解释:参考答案:B题目详解:小马队已比赛了3场:说明小马队和小熊队、小龙队、小牛队各打了1场;小龙队已比赛了1场:说明小龙队只和小马队比赛了1场;小熊队已比赛了2场:因为和小马队比赛了1场,所以还有1场比赛。因为小龙队只和小马队比赛过,所以小熊队只能和小牛队进行比赛。因此小牛队比赛了2场,分别是和小马队、小熊队进行的比赛。所以,选B。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛
98、已知
,则
=_____ B: 1C: 2D: 4
参考答案: C 本题解释:参考答案:C题目详解:根据题干中
,可得
,那么:
。因此,选C。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
99、四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式_____。
A: 60种B: 65种C: 70种D: 75种
参考答案: A 本题解释:正确答案:A解析:本题属于排列组合题。我们可以这样想,第n次传球后,球不在甲手中的传球方法,第n+1次传球后,球就可能回到甲手中,所以只需求出第4次传球后,球不在甲手中的传法有多少种。可以列表:从第n次传球、传球的方法、球在甲手中的传球方法、球不在甲手中的传球方法这几个方面进行列表:因为第四次传球不能传给甲,所以本题要分情况讨论:首先,第一次传球甲有3种选择(3),接下来第一种情况:.第二次传球若回到甲手中(1)——第三次传球人有3种选择(3)——第四次传球的人有2种选择,因为不能传给甲(2)。第二种情况:第二次传球没有传给甲(2)——第三次传球传给了甲(1)——第四次传球的人有3种选择(3)。第三种情况:第二次传球没有传给甲(2)——第三次传球也没有传给甲(2)——第四次传球的人有2种选择,因为不能传给甲(2)。综上所述:总传球方式数为3*1*3*2+3*2*1*3+3*2*2*2=60。故答案为A。
100、某公司要在长、宽、高分别为50米、40米、30米的长方体建筑的表面架设专用电路管道联接建筑物内最远两点,预设的最短管道长度介于_____。
A: 70—80米之间B: 60—70米之间C: 90—100米之间D: 80—90米之间
参考答案: D 本题解释:正确答案是D考点几何问题解析