1、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:C【解析】300/80%=375元。故选C。
2、某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲B: 乙C: 丙D: 甲或乙
参考答案: B 本题解释:B解析:此题遵循“小往大处靠”原则,先把2吨的货物移动到4吨那,这样就相当于有了6吨货物,然后在把5吨的货物也移动到6吨,综上所述,运到乙仓库最省钱。
3、77个连续自然数的和是7546,则其中第45个自然数是_____。
A: 91B: 100C: 104D: 105
参考答案: C 本题解释:77个自然数的和是7546,故平均数7546÷77=98为中位数,也即第39个数,因此第45个数为104。故选C。
4、某单位职工24人中,有女性11人 ,已婚的有16人。已婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释: B 解析:由题意:未婚共有:24-16=8人,其中未婚女性有:11-6=5人,故未婚男性有:8-5=3人,选B。
5、王家村西瓜大丰收后,全村男女老少分四个组品尝西瓜,且每组人数正好一样多,小伙子一人吃1个,姑娘两人吃1个,老人三人吃1个,小孩四人吃1个,一共吃了200个西瓜。则王家村品尝西瓜的共有_____。
A: 368人B: 384人C: 392人D: 412人
参考答案: B 本题解释:【答案】B。解析:解法一:设每组有x人,可列方程x+x/2+x/3+x/4=200,解得x=96,则品尝西瓜的人数有96×4=384人。因此,本题答案为B选项。解法二:利用整除关系。由题意,全村人数必须能被3和8整除,只有B满足。因此,本题答案为B选项。
6、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.
7、地球表面的陆地面积和海洋面积之比是29︰71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是_____
A: 284︰29B: 113︰55C: 371︰313D: 171︰113
参考答案: D 本题解释:【解析】D。根据题干中的比例关系,可以推断出南、北半球的海洋面积之比为:
8、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分,那么这个队胜了几场?_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:C解析:设这个队胜了a场,平了b场,则3a+b=19,a+b=14-5=9;解得a=5。
9、200除500,商2余100,如果被除数和除数都扩大3倍,则余数是_____。
A: 100B: 200C: 300D: 100000
参考答案: C 本题解释:【解析】商不变,余数跟着扩大3倍,所以是300,选C。
10、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?_____
A: 36B: 37C: 39D: 41
参考答案: D 本题解释:【答案】D。解析:假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。
11、李明从图书馆借来一批图书,他先给了甲5本和剩下的
,然后给了乙4本和剩下
,最后自己还剩2本。李明共借了多少本书?_____
A: 30B: 40C: 50D: 60
参考答案: A 本题解释: 【解析】A。解法一、设李明共借书x本,则
,解得x=30;解法二、思维较快的直接倒推用反计算,
。
12、共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有_____个。
A: 2B: 3C: 5D: 7
参考答案: A 本题解释:【答案】A。解析:设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
13、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间为_____立方米。 B: 1500C: 5000D: 9000
参考答案: D 本题解释:【答案】D。解析:仓库的容量为250×10×4=10000立方米,1000个棱长为1米的正方体箱子体积为1000×1×1×1=1000立方米,则剩余空间为10000-1000=9000平方米,故正确答案为D。
14、定义:①群体互补效应:由不同年龄、专业、智能水平、气质类型的人才有机地组成一个结构合理的人才群体,达到知识互用、能力互补,使只有专才的个体,变成多能的人才群。②群体协调效应:在结构合理的人才群体中,逐步形成了群体每个成员共同遵守的良好的道德规范和传统作风,以此调节和协调群体中个体与个体、个体与群体、群众与社会的关系,并影响和控制整个群体,使群体的力量和功能得到维护和加强。③群体感应效应:在结构合理的人才群体中,人才之间在目标上志同道合,在学风上互相感染,在学术上互相影响,同心同德,紧密团结,创新意识和创造思维不断激化和强化,形成对人才创造特别有利的“微型气候”。典型例证:(1)某大学有效整合资源,在校内外组织多方面人才,团结协作,集体攻关。(2)正因为好大学有优良的校风和传统,所以人人才都想上好大学。(3)小李做事低调,从不张扬。上述典型例证与定义存在对应关系的数目有_____。
A: 0个B: 1个C: 2个D: 3个
参考答案: C 本题解释:【答案】C。解析:第一步:抓住每个定义中的关键词群体互补效应:关键词强调“不同年龄、专业、智能水平、气质类型的人才”、“知识互用、能力互补”。群体协调效应:关键词强调“群体每个成员共同遵守”、“调节和协调”。群体感应效应:关键词强调“目标上志同道合,在学风上互相感染,在学术上互相影响”。第二步:逐一分析例证与定义间的关系例证(1)大学组织了多方面的人才,形成群体互补效应,对应定义①,例证(2)好大学因为有优良的校风和传统而受欢迎,属于群体感应效应,对应定义③;例证(3)讲的是小李的个体行为,与上面的定义均不相符。例证与定义存在对应关系的数目有2个,故正确答案为C。
15、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?_____
A: 900B: 180C: 270D: 500
参考答案: D 本题解释:【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18%,可知女警官有500人。
16、下列哪项能被11整除? _____
A: 937845678B: 235789453C: 436728839D: 867392267
参考答案: A 本题解释:A【解析】9+7+4+6+8=343+8+5+7=2334-23=11所以,答案是A。
17、某单位举办庆国庆茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量。那么原来每箱苹果重多少千克?_____
A: 16B: 24C: 32 D: 36
参考答案: C 本题解释:【答案】C。解析:取出4×24=96千克苹果,相当于4-1=3箱的重量,则原来每箱苹果重96÷3=32千克。
18、有一种用六位数表示日期的方法是:从左到右的第一、第二位数表示年,第三、第四位数表示月,第五、第六位数表示日,例如890817表示1989年8月17日。如果用这种方法表示1991年的日期,那么全年中有6个数都不同的日期共有多少天?_____
A: 99B: 90C: 30D: 20
参考答案: C 本题解释:【解析】因为有91,所以1、9、10、11、12月都不能出现,实际上,2月因为0、1、2、均已出现,9102XX也是不行的,(第一个X应为0、1、2中之一)。在剩下的6个月中,每个月都有5天,共5×6=30天,例如:三月份:910324,910325,910326,910327,910328。
19、单独完成某项工作,甲需要16小时,乙需要12小时,如果按照甲、乙、甲、乙……的顺序轮流工作,每次1小时,那么完成这项工作需要多长时间?_____
A: 13小时40分钟B: 13小时45分钟C: 13小时50分钟D: 14小时
参考答案: B 本题解释:答案:B.[解析]本题为工程类题目。设总工程量为48,则甲的效率是3,乙的效率是4,工作12小时后,完成了42。第12小时甲做了3,完成了总工程量45,剩余的3由乙在第十四小时完成。在第十四小时里,乙所用的时间是3/4小时,所以总时间是13.75小时。
20、用0,1,2,…,9这10个数字组成一个四位数,一个三位数,一个两位数与一个一位数,每个数字只许用一次,使这四个数的和等于2007,则其中三位数的最小值为_____。
A: 386B: 260C: 230D: 204
参考答案: D 本题解释:D。
21、某人以96元的价格出售了两枚古铜币,一枚挣了20%,一枚亏了20%。问:此人盈利或亏损的情况如何?_____
A: 挣了8元 B: 亏了8元 C: 持平 D: 亏了40元
参考答案: B 本题解释: 【解析】B。96×2-[96÷(1+20%)+96÷(1-20%)]=192-200=-8,亏了8元。
22、办公室有甲、乙、丙、丁4位同志,甲比乙大5岁,丙比丁大2岁。丁三年前参加工作,当时22岁。他们四人现在的年龄之和为127岁。那么乙现在的年龄是_____
A: 25岁B: 27岁C: 35岁D: 40岁
参考答案: C 本题解释:答案:C【解析】根据题意,丁现在25岁,丙现在27岁,甲和乙共127-27-25=75岁,甲比乙大5岁,所以乙现在(75-5)÷2=35岁。
23、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒?_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:【答案】C。解析:从一楼走到五楼,休息了3次,那么每爬上一层需要的时间为(210-30×3)÷4=30秒,故从一楼走到七楼需要30×(7-2)+30×(7-1)=330秒。故正确答案为C。
24、将一根绳子连续对折三次,然后每隔一定长度剪一刀,共剪6刀。问这样操作后,原来的绳子被剪成几段?_____
A: 18段B: 49段C: 42段D: 52段
参考答案: B 本题解释:【答案】B。解析:对折三次,则绳子变成8折,在上面剪6刀,第一刀为8*1+1=9段;第二刀为8*2+1=17段,依次类推第六刀为8*6+1=49段,因此绳子被剪成49段。因此正确答案为B。
25、某大型项目考察团队的所有员工年龄都在26~35岁之间,问:改考察团队至少有多少人才能保证在同一年出生的有5人?_____
A: 41B: 49C: 50D: 51
参考答案: A 本题解释:【答案】A。解析:最不利情况就是每年出生的人都有4个人,做题方法:最不利的情况数+1=4×10+1=41
26、一个金鱼缸,现已注满水。有大、中、小三个假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中。现知道每次从金鱼缸中溢出水量的情况是:第一次是第二次的1/3,第三次是第二次的2倍。问三个假山的体枳之比是多少?_____
A: 1:3:5 B: 1:4:9 C: 3:6:7 D: 6:7:8
参考答案: B 本题解释:【答案】B。解析:本题的关键是要注意第二次把中假山放入水里的时候,浴缸水不满,缺少的部分恰好是小假山的体积。已知第一次溢出的水是第二次溢出的水的1/3,即第二次溢出的水的体积是中假山和小假山的体积差,可以推导出小假山与中假山体积比为1:4,此时可直接选出正确答案为B。
27、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。
28、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能? _____
A: 15B: 16C: 20D: 18
参考答案: B 本题解释:答案:B 解析:根据题意,倒数第二个数字有0、2.、4、8四种可能;倒数第三个数字同样有4种可能(只需与倒数第二个数字不同即可),故该手机号为4×4=16种可能。
29、一个9×11个小矩形组成的大矩形一共有多少个矩形? _____
A: 2376B: 1188C: 2970D: 3200
参考答案: C 本题解释:C【解析】矩形是由横向2条平行线,纵向2条平行线相互垂直构成的。9×11的格子,说明是10×12条线。所以我们任意在横向和纵向上各取2条线就能构成一个矩形。答案就是 C10取2×C12取2=2970。
30、将10克盐和200克浓度为5%的盐水一起加入一杯水中,可得浓度为2.5%的盐水,则原来杯中水的克数是_____。
A: 570B: 580C: 590D: 600
参考答案: C 本题解释:C。
31、甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?_____
A: 20,11,50 B: 19,7,55 C: 12,9,60 D: 11,15,55
参考答案: B 本题解释:B。【解析】三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1.甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2.甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3.最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元。
32、将60拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是多少?_____
A: 5B: 7C: 11D: 13
参考答案: B 本题解释:B。最大的质数必大于5,否则10个质数之和将不大于50。所以最大的质数最小为7,且7的个数尽可能多。60÷7=8……4,而4=2+2,所以60可以分拆成8个7和两个2的和。故满足条件的最大的质数最小为7。
33、由1、2、3组成的没有重复数字的所有三位数之和为多少?_____
A: 1222 B: 1232 C: 1322 D: 1332
参考答案: D 本题解释:D。因为1、2、3之和可被3整除,故而1、2、3所组成的没有重复数字的三位数都能被3整除,而这些数字相加之和也必能被3整除,只有D项能被3整除,为正确答案。根据排列组合原理,可知该没有重复数字的三位数共有6个,1、2、3三个数在个、十、百位上各出现两次,即(1+2+3)×2=12,也就是说这一数字当为12+120+1200=1332。
34、某试卷共25题,答对的,一题得4分;答错或不答的,一题扣1分,小王得了60分,则小王答对了多少题?_____
A: 14B: 15C: 16D: 17
参考答案: D 本题解释: D [解析] 设答对了x道题,则未答对的题为(25-x)题,可得4x-(25-x)×1=60,解得x=17。故本题选D。
35、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?_____
A: 19B: 20C: 18D: 17
参考答案: B 本题解释:【解析】由已知得每个数字开头的数各有24÷4=6个,从小到大排列,7开头的从第6×3+1=19个开始,易知第19个是7245,第20个是7254。
36、某条道路的一侧种植了51棵梧桐树,其中道路两端各有一棵,且相邻两棵树之间的距离相等。如果需要在这一侧再多种10棵树,且通过移动一部分树(不含首尾两棵)使所有相邻两棵树之间的距离仍然相等,则这51棵树中至少有多少棵不需要移动位置?_____
A: 9B: 10C: 11D: 12
参考答案: C 本题解释:【答案】C。解析:设路长为50×60米,则第一次的间距为60米,第二次的间距为50米,不需要移动位置的树距起点的距离必须为60和50的公倍数,即距离应是300的倍数。总长为3000米,则中间有9棵树不需要移动,再加上首尾两棵,一共有11棵树不需要移动。因此,本题选择C选项。
37、一段路程分为上坡、平路、下坡三段,路程长之比依次是1∶2∶3。小龙走各段路程所用时间之比依次是4∶5∶6。已知他上坡时速度为每小时3千米,路程全长是50千米,小龙走完全程用多少小时?_____
A: 10(5/12)B: 12C: 14(1/12)D: 10
参考答案: A 本题解释:A解析:上坡、平路、下坡的速度之比是:14∶25∶36=5∶8∶10平路速度为:3×8/5=24/5(千米/小时)下坡速度为:3×10/5=6(千米/小时)上坡路程为:50×1/(1+2+3)=50/6=25/3(千米)平路路程为:50×2/(1+2+3)=50/3(千米)下坡路程为:50×3/(1+2+3)=25(千米)25/3÷3+50/3÷24/5+25÷6=10(5/12)(小时)故本题选A。
38、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?_____
A: 80B: 79C: 83D: 81
参考答案: B 本题解释:【解析】从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个。故应选择B。
39、有甲乙丙三种盐水,浓度分别为5%、8%、9%,质量分别为60克、60克、47克,若用这三种盐水配置浓度为7%的盐水100克,则甲种盐水最多可用_____
A: 49克B: 39克C: 35克D: 50克
参考答案: A 本题解释:【答案】A。解析:
40、某人登山,上山时每走30分钟,休息10分钟;下山时每走30分钟,休息5分钟;下山的速度是上山速度的1.5倍。如果下山用了2小时15分,那么上山用的时间是_____。
A: 3小时40分B: 3小时50分C: 4小时D: 4小时10分
参考答案: B 本题解释:【答案】B。解析:设上山速度是1,下山的速度是1.5,下山的时间是135分钟,那么走了4个30分钟,休息了3个5分钟,也就是走了2小时,那么路程就是1.5×2=3,上山时速度是1,时间就是3÷1=3小时,也就是走了6个30分钟,这需要休息5个10分钟,总共就用了3小时50分钟。
41、某地收取手机费的标准是:每月打电话不超过30分钟,每分钟收费5角;如果超出30分钟,超出部分按每分钟7角收费。已知某月甲比乙多交了3元3角的手机费,则该月甲、乙两人共打了多少分钟电话?_____
A: 63B: 62C: 61D: 60
参考答案: A 本题解释:如果甲、乙两人打电话都超过30分钟,那么相差的电话费就应该是7的倍数,显然33不是7的倍数;如果甲、乙两人打电话都没超过30分钟,那么相差的电话费就应该是5的倍数,显然33不是5的倍数,因此只有一种情况:甲超过了30分钟,乙未达到30分钟。因为只有33=5×1+7×4一种情况满足题意,故甲打电话时间为30+4=34(分钟),乙打电话时间为30一1=29(分钟),甲、乙两人共打了34+29=63(分钟)。故选A。
42、一次知识竞赛,共3道题,每个题满分6分。给分时只能给出自然数0—6分。如果参加竞赛的人三道题的得分的乘积都是36分,并且任意两人三道题的得分不完全相同,那么最多有多少人参加竞赛? _____
A: 24B: 20C: 18D: 12
参考答案: D 本题解释:【解析】D。解析:36=1×6×6=2×3×6=3×3×4,三道题得1,6,6分有3种可能,三道题得2,3,6分有6中可能,三道题得3,3,4分有3种可能。故最多有3+6+3=12人。
43、小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差_____。
A: 4岁B: c+4岁C: 5岁D: c-3岁
参考答案: C 本题解释:【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。
44、a=8.8+8.98+8.998+8.9998+8.99998,则a的整数部分是_____。
A: 45B: 44C: 43D: 42
参考答案: B 本题解释:B 【解析】因为a>8.8×5=44,a<9×5=45,所以a的整数部分是44。
45、试求出下边图形中阴影部分的面积_____。
A: 3B: 2C: 1.5D: 11
参考答案: B 本题解释:【答案】B。解析:图形正中间的正方形边长为2,那么它的面积为4。阴影面积为它的一半,所以是2。
46、有一批书要打包后邮寄,要求每包内所装书的册数都相同,用这批书的7/12打了14个包还多35本,余下的书连同第一次多的零头刚好又打了11包,这批书共有多少本?_____
A: 1000B: 1310C: 1500D: 1820
参考答案: C 本题解释: C 解析: 由已知条件,全部书的7/12打14包还多35本,可知全部书的1/12打2包还多5本,即全部书的5/12打10包还多25本,而余下的是5/12加35本打11包。所以,(35+25)÷(11-10)=60本,1包是60本,这批书共有(14+11)×60=1500(本)。故本题正确答案为C。
47、32头牛和若干匹马的价钱相等,如果把牛的头数和马的头数互换,马的头数再减少14头,此时二者的价钱又相等了。请问,每头牛和马的价格比为多少?_____
A: 2∶1 B: 3∶2 C: 4∶3 D: 3∶4
参考答案: D 本题解释:【答案】D。解析:设32头牛和x匹马的价钱相同,则交换后,x头牛和32-14=18头马的价钱相同,则32∶x=x∶18,解得x=24。故每头牛和马的价格比为24∶32=3∶4。
48、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:_____
A: 60;B: 65;C: 70;D: 75;
参考答案: A 本题解释:【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种
49、某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?_____
A: 360B: 382.5C: 401.5D: 410
参考答案: B 本题解释:【答案】B。解析:如下表:
因此最少需要180+120+82.5=382.5元。
50、有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且A队获得了三项比赛的第一名,问总分最少的队伍最多得多少分? _____
A: 7B: 8C: 9D: 10
参考答案: B 本题解释:【答案】B 解析∶四项比赛的总得分是(5+3+2+1)×4=44分,A已得15分,最少得16分,剩下三人总得分最多为28分,要求得分最少的人得分最多且得分互不相同,则三人得分分别是8,9,11。此时一人得三项第二和一项第三,一人得一项第二和三项第三。
51、某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?_____
A: 382位B: 406位C: 451位D: 516位
参考答案: B 本题解释:【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个
52、幼儿园里,老师将一堆桃子分给同学,如果每个同学分3个则余2个,如果每个同学分4个,则有两个同学分不到,该班有多少个同学?_____
A: 10B: 12C: 15D: 18
参考答案: A 本题解释:A【解析】设共有x个同学,由题意得3x+2=4(x-2),解得x=10。
53、10个人欲分45个苹果,已知第一个人分了5个,最后一人分了3个,则中间的8人一定存在连续的两人至少分了_____个苹果。
A: 8B: 9C: 10D: 11
参考答案: C 本题解释:【答案】C。解析:中间的8人共分得苹果45—5—3=37(个),将中间的8人分为4组,即(第2、3个人)(第4、5个人)(第6、7个人)(第8、9个人)。由37=9×4+1可知,必有1组,即连续的两人分到了10个苹果。故答案为C。
54、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。到11月11日,他们一共挣了1764元。这个小组计划到12月9日这天挣足3000元捐给“希望工程”。因此小组必须在几天后增加一个人。增加的这个人应该从11月_____日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱。
A: 18B: 24C: 14D: 20
参考答案: D 本题解释:D[解析]还缺3000-1764=1236(元),从11月12日~12月9日还有30+9-12+1=28(天),这28天中,(原来小组中)每人可挣3×28=84(元)。因为1236÷84=14……60,所以原有14人,必须增加一个人挣60元。60÷3=20(天),30+9-20+1=20,所以增加的这个人应该从11月20日起去打工。
55、把一根钢管锯成两端要4分钟,若将它锯成8段要多少分钟?_____
A: 16B: 32C: 14D: 28
参考答案: D 本题解释:【解析】D。锯成2段只需要锯1次,即每次需要4分钟,而锯8段需要锯7次,7×4=28,所以正确答案为D。
56、甲、乙两车运一堆货物。若单独运,则甲车运的次数比乙车少5次;如果两车合运,那么各运6次就能运完,甲车单独运完这堆货物需要多少次_____
A: 9B: 10C: 13D: 15
参考答案: B 本题解释:【答案】B。解析:工程问题。设甲单独需要x,则乙单独需要x+5,依题意有1/x+1/(x+5)=1/6,解得x=10。
57、在同一环形跑道上小陈比小王跑得慢,两人都按同一方向跑步锻炼时,每隔12分钟相遇一次;若两人速度不变,其中一人按相反方向跑步,则隔4分钟相遇一次。问两人跑完一圈花费的时间小陈比小王多几分钟?_____
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:不妨设小王和小陈速度分别为x,y,跑道长度为s,则:两人都按同一方向跑步锻炼时,每隔12分钟相遇一次,说明s/(x—y)=12;若两人速度不变,其中一人按相反方向跑步,则每隔4分钟相遇一次,说明s/(x+y)=4;解得s=6x=12y,所以两人跑完一圈花费的时间小陈比小王多6分钟。
58、一容器内有浓度为30%的糖水,若再加入30千克水与6千克糖,则糖水的浓度变为25%。问原来糖水中含糖多少千克_____
A: 15千克 B: 18千克 C: 21千克 D: 24千克
参考答案: B 本题解释:【解析】B。设原来糖水有10x千克,含糖3x千克,则现在糖水有(10x+36)千克,含糖(3x+6)千克。由题意有
,解得x=6,则3x=18,即原来糖水中含糖18千克。
59、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?_____
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
60、任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少? _____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:【答案】B 解析∶特殊值法,取64,按题意,最后结果为l。也可用排除法,最后结果显然不能为0;若为2,按题意,需再计算一次,得到l;若为3,需继续运算,最后结果也将是1。
61、A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分,小孙的速度为105米/分,且经过12分钟后两人第二次相遇。问A,B两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:易知到第二次相遇时,两人合起来走过的距离恰为A、B两校距离的3倍,因此A、B两校相距(85+105)×12÷3=760(米)。故选D。
62、某市出租车收费标准是:5千米内起步费10.8元,以后每增加1千米增收1.2元,不足1千米按1千米计费。现老方乘出租车从A地到B地共支出24元,如果从A地到B地先步行460米,然后再乘出租车也是24元,那么从AB的中点C到B地需车费_____元。(不计等候时间所需费用)
A: 12B: 13.2C: 14.4D: 15.6
参考答案: C 本题解释:经济M题。共花钱24元,超过5千米的部分为24-10.8=13.2(元),超过5千米后走了13.2÷1.2=11(千米),总路程最多为16千米,因为步行460米后花费相同,说明460米后的路程一定超过15千米,则总路程15+0.46<S≤16,则C到B的距离7.73<< p>S/2≤8,因不足1千米按1千米计费,故应看成8千米,共花费10.8-9(8-5)×1.2=14.40(元)。
63、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: 1400C: 1120D: 1050
参考答案: D 本题解释:【答案】D。解析:主唱分25%,其余5人分75%,所以每人分15%,所以7000×l5%=1050元。
64、某三年制普通初中连续六年的在校生人数分别为:X1,X2,X3,X4,X5,X6.假设该校所有学生都能顺利毕业,那么前三年的入学学生总数与后三年的入学学生总数之差为_____
A: (X1+X2+X3)-(X4+X5+X6) B: X1-X4C: X3-X6 D: (X3-X1)-(X6-X4)
参考答案: C 本题解释:【解析】C.考查整体思维。前三年入学学生人数本质上就是第三年的在校生人数X3(第三年在校生的初三、初二、初一分别为前三年的入学人数),类似的,X6即为后三年的入学人数。故答案为X3-X6.
65、某公司一季度有82%的人全勤,二季度有87%的人全勤,三季度有96%的人全勤,四季度有93%的人全勤。那么全年全勤的人最多占_____,最少占_____。
A: 82%,42%B: 82%,58%C: 87%,58%D: 87%,42%
参考答案: B 本题解释:B【解析】当一季度全勤的人在其他三个季度也是全勤时,全年全勤人数的比例最高,即占82%。一季度没有全勤的人数占18%,二季度没有全勤的人数占13%,三季度没有全勤的人数占4%,四季度没有全勤的人数占7%,因此全年至少有1-(18%+13%+4%+7%)=58%的人全勤,故本题答案为B。
66、某校下午2点整派车去某厂接劳模作报告,往返须1小时。该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点40分到达。问汽车的速度是劳模的步行速度的几倍? _____
A: 4B: 6C: 7D: 8
参考答案: D 本题解释:D。【解析】本题要画图辅助,假设全程距离为1,汽车来回的时间为1小时,所以,其速度为1,汽车运行时间为2/3小时,所以汽车跑的路程为2/3,人走的距离为剩下1/3路程的一半,即1/6,步行的时间为1小时20分,所以步行的速度是1/6÷(1+1/3)=1/8,所以汽车的速度是劳模的8倍。选D。
67、某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客在8折的基础上要求再让利150元,如果真是这样,商店的盈亏情况是:_____
A: 亏20元B: 赚20元C: 亏30元D: 赚30元
参考答案: C 本题解释:【答案】C。解析:该皮衣的成本为1150×0.8÷(1+15%)=800元,在8折的基础上再让利150元的收入为1150×0.8-150=770元,所以商店会亏损800-770=30元。
68、如图所示,半圆与等腰三角形ABC的斜边AC相切,AB=BC=1。
问半圆的直径是多少?_____
A: AB: BC: CD: D
参考答案: C 本题解释:C
69、甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。摩托车开始速度是50千米/小时,中途减速为40千米/小时。汽车速度是80千米/小时。汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时是在他出发后的多少小时?_____
A: 1B: 1(1/2)C: 1/3D: 2
参考答案: C 本题解释:C解析:汽车行驶100千米需100÷80=1(1/4)(小时),所以摩托车行驶了1(1/4)+1+,1/6=2(5/12)(小时)。如果摩托车一直以40千米/小时的速度行驶,2(5/12)小时可行驶96(2/3)千米,与100千米相差10/3千米。所以一开始用50千米/小时的速度行驶了10/3÷(50-40)=1/3(小时)。故本题选C。
70、将700克14.3%的盐水与900克11.1%的盐水混合后,再加入200克盐,蒸发掉300克水后,该盐水的浓度为_____。
A: 22.2%B: 24.3%C: 26.7%D: 28.6%
参考答案: C 本题解释:【答案】C。解析:由题意可得,最后该盐水浓度为(700×14.3%+900×11.1%+200)÷(700+900+200-300)=400÷1500≈26.7%。故正确答案为C。
71、有一个上世纪80年代出生的人,如果他能活到80岁,那么有一年他的年龄的平方数正好等于那一年的年份。问此人生于哪一年_____
A: 1980年 B: 1983年 C: 1986年 D: 1989年
参考答案: A 本题解释:【解析】A。1980~2069中只有一个平方数2025(即),由“有一年他的年龄的平方数正好等于那一年的年份”可知满足条件的那一年是2025年,此时他的年龄为45岁,因此此人生于2025-45=1980(年),符合“上世纪80年代出生”这个要求。
72、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分B: 12点15分C: l2点20分D: 12点30分
参考答案: A 本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。
73、
74、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?_____
A: 240B: 320C: 450D: 480
参考答案: B 本题解释: 答案【B】采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6) ×A(3,3) =320(种)。
75、20+19-18-17+16+15-14-13+12+11···+4+3-2-1=_____。
A: 10B: 15C: 19D: 20
参考答案: D 本题解释:【答案】D。解析:解析1:原式=(20-18)+(19-17)+(16-14)+(15-13)+···+(4-2)+(3-1)=2+2+2+2+···+2+2=2×10=20。故正确答案为D。解析2:原式=20+(19-18-17+16)+(15-14-13+12)+…+(3-2-1)=20。故正确答案为D。
76、在一次国际美食大赛中,中、法、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄罗斯评委给出的平均分是92,那么中国评委和俄罗斯评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:C【解析】设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2,又因为A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。
77、出租车在开始10千米以内收费10.5元,以后每走1千米,收费1.7元。请问走25千米需收多少钱?_____
A: 20.6元 B: 35元 C: 36.5元D: 36元
参考答案: D 本题解释:D
78、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:答案:C 解析:从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。
79、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150D: 154
参考答案: B 本题解释:【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
80、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】首先目测可以知道3/7、17/35和101/203都小于1/2,而4/9和151/301都大于1/2,所以只要比较二者的大小就可以,通过计算,151/301大,所以选择D。
81、某月刊杂志,定价2.5元,劳资处一些人订全年,其余人订半年,共需510元,如果订全年的改订半年,订半年的改订全年,共需300元,劳资处共多少人?_____
A: 20 B: 19 C: 18 D: 17
参考答案: C 本题解释: 【解析】本题用解方程的方法也可以解答,但是速度较慢。由题意可知,如果劳资处所有人都订一年半的话,总计810元;而单人订一年半的月刊需元;所以共有
人。故选C。
82、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。
83、某单位举行“庆祝建党90周年”知识抢答赛,总共50道抢答题。比赛规定:答对1题得3分,答错1题扣1分,不抢答得0分。小军在比赛中抢答了20道题,要使最后得分不少于50分,则小军至少要答对_____道题。
A: 16 B: 17 C: 18 D: 19
参考答案: C 本题解释:C。假设答对x题,取最坏情形,剩下都答错,则答错20-x题,总分不少于50,则有3x-(20-x)≥50,求得x≥17.5,取最小值为18。
84、某人在雅虎上申请了一个邮箱,邮箱密码是由0至9中任意4个数字组成,他任意输入4个数字,输入正确密码的概率是_____。
A: 10 B: 10 C: 10 D: 10
参考答案: B 本题解释:B[解析]正确的密码只有一个,这10个数字的组合共有10个,所以答案是B。
85、在1至1000的1000个自然数中,既不是4的倍数,也不是6的倍数的数共有多少个?_____
A: 375B: 416C: 625D: 791
参考答案: C 本题解释:C【解析】1000÷4=250(个),所以1至1000中4的倍数的数有250个。1000÷6=166……4,所以1至1000中6的倍数的数有166个。1000÷(4×6)=41……16,说明1至1000中既是4的倍数,又是6的倍数的数有41个。即4的倍数的个数与6的倍数的个数的交集有41个,如图所示。所以1至1000中,既是4的倍数,也是6的倍数的数共有209+125+41=375(个)。则1至1000中,既不是4的倍数,也不是6的倍数的数共有:1000-(209+125+41)=1000-375=625(个)。故本题选C。
86、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150 D154
参考答案: B 本题解释: 【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
87、19991998的末位数字是:_____
A: 1 B: 3 C: 7 D: 9
参考答案: A 本题解释:【解析】此题关键是要考察末位数的变化情况,9的一次幂、二次幂、三次幂、四次幂……的尾数呈9、1、9、1……变化,即其奇数次幂时尾数是9,偶数次幂时尾数是1,所以,选A
88、把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8=11。若对某些自然数n满足n-Sn=2007,则n最大值是_____。
A: 2010B: 2016C: 2019D: 2117
参考答案: C 本题解释:C【解析】当n-Sn=2007时,n为20ab的形式,依题意有20ab-(2+a+b)=2007,可得2000+10a+b-2-a-b=2007,得出a=1。当b取最大值9时,n有最大为2019。故选C。
89、5,3,7三个数字可以组成几个三位数?_____。
A: 8个B: 6个C: 4个D: 10个
参考答案: B 本题解释:B【解析】百位上的数可以在5,3,7三个数中选一个,有3种选法;在确定百位上的数后,十位上的数只有两种选法;百位上和十位上的数确定以后,个位上的数只有一种选法。所以三位数的组成方法共有3×2×1=6(种)。故正确答案为B。
90、7个同学排成两排照相,前排3人,后排4人,共有_____种站法。
A: 1680B: 2400C: 2520D: 5040
参考答案: D 本题解释:【解析】相当于把7个元素放在预先指定好的7个不同位置上,因此,是7个同学的全排列,共有P77=5040种站法。
91、四个相邻质数之积为17017,他们的和为_____
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:答案:A【解析】17017分解因数为17×13×11×7,他们的和为48。
92、41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:4个人渡过去,1个人回来,因此每2次渡河可以渡过去3个学生.41=3×13+2,因此一共需要13×2+1=27次。
93、一个班有50名学生,他们的名字都是由2个或3个字组成的。将他们平均分为两组之后,两组的学生名字字数之差为10。此时两组学生中名字字数为2的学生数量之差为_____。
A: 5B: 8C: 10D: 12
参考答案: C 本题解释:C【解析】不定方程问题。由题意两组学生名字字数相差10,两边人数相同,即其中一组比另一组三名字人数多10人,则2名字人数少10人。
94、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能?_____
A: 15B: 16C: 20D: 18
参考答案: B 本题解释:后三位全是偶数,且三数中相邻数字不同,已知最后一位是6,所以倒数第二位有0、2、4、8四种可能,倒数第三位也有四种可能性,故该手机号码有4×4=16(种)可能。
95、某工厂11月份工作忙,星期六、日不休息,而且从第一天开始,每天下班后都从总厂陆续派相同人数的工人到分厂工作,直到月底下班后,总厂还剩工人238人。如果月底统计总厂工人的工作量是8070个工作日(1人工作1天为1个工作日),且无1个缺勤,那么,这个月由总厂派到分厂工作的工人共多少人?_____
A: 46人B: 30人C: 60人D: 62人
参考答案: C 本题解释:11月份有30天。设每天下班后派往分厂的人数为2,则根据题意可知,最后一天总厂的工作量为238+z,可列方程238+x+238+2x+…+238+30x=8070,解得x=2,即每天派2人到分厂工作,11月份30天共派了60人到分厂。故答案为C。
96、小王和小李合伙投资,年终根据每人的投资进行分红,小王取了全部的1/3另加9万元,小李取剩余1/3和剩下的14万元。问小王比小李多得多少万元_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B【解析】小李取剩下的1/3和剩下的14万元,即说明小李获得了14×3/2=21万元。又因为小王取了全部的1/3另加9万元,所以分红共有(21+9)×3/2=45万元。因此小王获得了45-21=24万元,所以小王比小李多得24-21=3万元。
97、如是2003除以一个两位数后,所得余数最大,则这个两位数为_____。
A: 92B: 82C: 88D: 96
参考答案: D 本题解释:D【解析】 2003÷99=20……2323+20×3=83所以商是20时,余数最大是83,此时除数是99-3=96。2003÷95=21……88+21×3=71所以商是21时,余数最大是71,此时除数是95-3=92。2003÷91=22……11+22×3=67所以商是22时,余数最大是67,此时除数是91-3=88。2003÷87=23……22+23×3=71所以商是23时,余数最大是71,此时除数是87-3=84。当除数小于84时,余数小于83。综上所述,余数最大是83,此时除数AB=96。
98、某服装厂要生产一批某种型号的学生服,已知每3米长的某种面料可做上衣2件。或做裤子3条,计划用300米长的这种布料生产学生服,应用多少米布料产生上衣,才能恰好配套?_____
A: 120B: 150C: 180D: 210
参考答案: C 本题解释:答案:C【解析】3米长可做上衣2件,或裤子3条,则300米布料可做上衣200件,或裤子300条,即如需成套,则上衣和裤子的数量必须同样多,那么上衣所用布料当为3/5,即180米,裤子为120米,共可做120套服装。所以答案为选项C。
99、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】首先目测可以知道3/7、17/35和101/203都小于1/2,而4/9和151/301都大于1/2,所以只要比较二者的大小就可以,通过计算,151/301大,所以选择D。
100、某数的百分之一等于0.003,那么该数的10倍是多少?_____。
A: 0.003B: 0.03C: 0.3D: 3
参考答案: D 本题解释:D【解析】某数的百分之一为0.003,则该数为0.3,那么它的10倍为3。故正确答案为D。