1、单选题
一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之。既没有空调也没有高级音响的汽车有几辆?( )
A. 2;
B. 8;
C. 10;
D. 15;
参考答案: A
本题解释:
【答案解析】:选A,车行的小汽车总量=只有空调的+只有高级音响的+两样都有的+两样都没有的,只有空调的=有空调的-两样都有的=45-12=33,只有高级音响的=有高级音响的-两样都有的=30-12=18,令两样都没有的为x,则65=33+18+12+x=>x=2
2、单选题
现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( )。
A. 27人
B. 25人
C. 19人
D. 10
参考答案: B
本题解释:
【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。
3、单选题
某高校2006年度毕业学生7650名,比上年度增长2%,其中本科生毕业数量比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有( )。
A. 3920人
B. 4410人
C. 4900人
D. 5490人
参考答案: C
本题解释:
正确答案是C
考点和差倍比问题解析假设去年研究生毕业数为A,本科生毕业数为B,那么今年研究生毕业数为1.1A,本科生毕业数为0.98B。由题意知:A+B=7650÷(1+2%),1.1A+0.98B=7650,解得B=5000人。则今年本科生毕业数量为5000×0.98=4900人,故正确答案为C。
秒杀技由“本科生比上年度减少2%”可知“今年本科生数=98%×去年本科生数”(注意98%是百分数,本质上也是个分数),所以今年本科生应能够被49整除。由“研究生毕业数量比上年增加10%”知“今年研究生数=110%×去年研究生数”,所以今年研究生数应能够被11整除,据此两条得出正确答案为C。
4、单选题
A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?()
A. 9
B. 25
C. 49
D. 81
参考答案: D
本题解释:
【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
5、单选题
甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?( )
A. 780元
B. 890元
C. 1183元
D. 2083元
参考答案: A
本题解释:
【答案解析】最典型的代入型题目…根据题意可以知道总数和可以被3、4、5整除,满足的只有A。
6、单选题
一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元( )
A. 154
B. 196
C. 392
D. 490
参考答案: C
本题解释:
【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
7、单选题
为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?( )
A. 42.5元
B. 47.5元
C. 50元
D. 55元
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
解析1:先将15吨全部看成超出的部分,则按照每吨5元收费,共计收费75元,而实际交水费62.5元,少交12.5元。这是因为标准量以内每吨2.5元,比整体看做超出部分计价少交2.5元,因此标准用水量为5吨。因此12吨应交水费为5×2.5+7×5=47.5元。故正确答案为B。
解析2:设标准用水量上限为A吨,则有2.5A+5×(15-A)=62.5,解得A=5。用水12吨,应交水费2.5×5+5×(12-5)=47.5元。故正确答案为B。
秒杀技
将12吨用水看成标准量以内,应交水费为12×2.5=30元,但四个选项中没有此值,这说明12吨是超过标准用水量。那么15吨必然也是超过标准用水量,要计算12吨应交的水费,只需从15吨所交62.5元中扣除多超出的3吨的价钱即15元即可,也即为47.5元。故正确答案为B。
标签
差异分析
8、单选题
现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
A. 7
B. 8
C. 9
D. 10
参考答案: A
本题解释:
正确答案是A
考点多位数问题解析要使分得最多花的人分到的花尽可能的少,那么其他人分到的花尽可能的多。5人分到的花应尽量接近,以保证分得最多花的人分到的花尽可能少,所以最好是5个连续的自然数,21÷5=4.2,所以5人先分花数为2、3、4、5、6。2+3+4+5+6=20,还剩1朵花未分出。剩下的1朵花只能分给之前分到6朵花的人。则分得最多的人至少分得7朵鲜花,正确答案为A。
9、单选题
甲乙二人协商共同投资,甲从乙处取了15000元,并以两人名义进行了25000元的投资,但由于决策失误,只收回10000元。甲由于过失在己,愿意主动承担2/3的损失。问收回的投资中,乙将分得多少钱?( )
A. 10000元
B. 9000元
C. 6000元
D. 5000元
参考答案: A
本题解释:
正确答案是A
考点
经济利润问题
解析
共损失了25000-10000=15000元,甲承担15000×2/3=10000元,乙承担剩余的5000元损失,因此乙应该收回:他的投资-他承担的损失=15000-5000=10000元,故正确答案为A。
10、单选题
河道赛道场长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?( )
A. 48
B. 50
C. 52
D. 54
参考答案: C
本题解释:
【答案】C。解析:甲船顺水速度为2+6=8米/秒,逆水速度为6-2=4米/秒;乙船顺水速度为2+4=6米/秒,逆水速度为4-2=2米/秒。
11、单选题
小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有( )。
A. 3道
B. 4道
C. 5道
D. 6道
参考答案: D
本题解释:
正确答案是D
考点容斥原理问题解析由“小明答对的题目占题目总数的3/4”,可知题目总数是4的倍数;由“他们两人都答对的题目占题目总数2/3”,可知题目总数是3的倍数。因此,题目总数是12的倍数。小强做对了27题,超过题目总数的2/3,则题目总数是36。根据两集合容斥原理公式得两人都没有答对的题目共有36-(36×3/4+27-36×2/3)=6道,故正确答案为D。
12、单选题
一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少?( )
A. 14
B. 16
C. 15
D. 13
参考答案: A
本题解释:
正确答案是A
考点
工程问题
解析
设工作总量为20,则甲每天挖1,乙每天挖2,因此每轮工作量为3,于是可知前6轮完整完成,共完成工作量18,还剩下2,此时轮到甲继续工作,甲工作一天后还剩下1,还需要乙工作半天,所以一共挖了14天,故正确答案为A。
标签
赋值思想
13、单选题
真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是( )。
A. 6
B. 5
C. 7
D. 8
参考答案: A
本题解释:
【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。
14、单选题
某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:( )
A. 5人
B. 6人
C. 8人
D. 12人
参考答案: C
本题解释:
【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。
15、单选题
根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是( )。
A. 周一或周三
B. 周三或周日
C. 周一或周四
D. 周四或周日
参考答案: D
本题解释:
正确答案是D
考点
星期日期问题
解析
8月份为31天,有22个工作日,则休息日有9天,而31天大于四周小于五周,故有两种情况:
①1号为周日,保证休息日为1+2×4=9天;
②31号为周六,保证休息日为2×4+1=9天,则3号为周六,此时1号为周四。
故正确答案为D。
标签
分类分步
16、单选题
三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是( )。
A. A等和B等共6幅
B. B等和C等共7幅
C. A等最多有5幅
D. A等比C等少5幅
参考答案: D
本题解释:
正确答案是D
考点
不定方程问题
解析
解析1:
分别以等级代表其数量,根据题意可得
A+B+C=10……①;3A+2B+C=15……②
②-①×2可得:C-A=5,因此正确答案为D。
解析2:
代入选项法。根据题意可得
A+B+C=10……①;3A+2B+C=15……②
此时有3个未知量,只有2个方程,典型的不定方程问题。将选项代入,依次验证是否成立即可。以选项A为例,若选项A正确,则有:A+B=6。到此得到第三个方程,便可求解此方程组,得C=4,A=-1,B=7。故排除A。
类似的方法可排除选项B、C。故正确答案为D。
解析3:
根据题意可得
A+B+C=10……①;3A+2B+C=15……②
由②-①消去C,可得2A+B=5。由于A、B、C均为非负整数,由此可知0≤2A≤5,因此A只能取值0、1、2。依次代回,可得A、B、C的可能取值为0、5、5;1、3、6;2、1、7三种情形,只有选项D上述三组数据都符合。故正确答案为D。
解析4:
根据题意可得
A+B+C=10……①;3A+2B+C=15……②
对不定方程而言,往往不能得到唯一的一组解。但从选项容易看出,只要求出其中一组解即可验证不符合的选项,将其排除掉即可。因此令A=0,发现B=5、C=5,符合非负整数要求。此时可迅速排除前两个选项,而选项C显然错误。故正确答案为D。
17、单选题
某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口( )。
A. 30万
B. 31.2万
C. 40万
D. 41.6万
参考答案: A
本题解释:
【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。
18、单选题
一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?( )
A. 16天
B. 20天
C. 22天
D. 24天
参考答案: A
本题解释:
正确答案是A
考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。
解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
19、单选题
同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?( )
A. 6
B. 7
C. 8
D. 9
参考答案: B
本题解释:
正确答案是B
考点
工程问题
解析
解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。
解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。
标签
差异分析
20、单选题
某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?( )
A. 10850
B. 10950
C. 11050
D. 11350
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。
标签
差异分析
21、单选题
一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?( )
A. 1894年
B. 1892年
C. 1898年
D. 1896年
参考答案: B
本题解释:
正确答案是B
考点
年龄问题
解析
由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。
22、单选题
共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?( )
A. 30
B. 55
C. 70
D. 74
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。
标签
三集合容斥原理公式逆向考虑
23、单选题
杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?( )
A. 3.90
B. 4.12
C. 4.36
D. 4.52
参考答案: D
本题解释:
【解析】D。三次的单价分别为5元、5×80%=4元、4×80%=3.2元。最外层有货物(7-1)x4=24个,中间层有24-8=16个,最内层有I6-8=8个。所以总进价为3.2x24+4xl6+5x8=l80.8元,要保证20%的利润率,货物定价为180.8x(1+20%)÷(24+16+8)=4.52元。
24、单选题
共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有( )个。
A. 2
B. 3
C. 5
D. 7
参考答案: A
本题解释:
正确答案是A
考点不定方程问题解析设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
25、单选题
张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每件减1元,我就多订购四件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可得与原来一样多的利润。则这种商品每件的成本是( )。
A. 75元
B. 80元
C. 85元
D. 90元
参考答案: A
本题解释:
正确答案是A
考点经济利润问题解析设该商品每件成本x元,则未减价前每件利润为(100-x)元,减价5%后每件利润为(95-x)元,订购数量为(80+5×4)件,根据题意有80×(100-x)=(95-x)×(80+5×4),解得x=75,故正确答案为A。
26、单选题
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?( )
A. 8%
B. 9%
C. 10%
D. 11%
参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
27、单选题
甲、乙两个容器均有50厘米深,底面积之比为5:4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是( )。
A. 20厘米
B. 25厘米
C. 30厘米
D. 35厘米
参考答案: B
本题解释:
正确答案是B
考点几何问题解析设注入水后的水深为y厘米,则根据注入水同样多,可知(y-9)×5=(y-5)×4,解得y=25,故正确答案为B。
28、单选题
某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?( )
A. 18
B. 16
C. 12
D. 9
参考答案: C
本题解释:
正确答案是C
考点
和差倍比问题
解析
设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。
秒杀技
有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。
29、单选题
从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同。
A. 21
B. 22
C. 23
D. 24
参考答案: C
本题解释:
正确答案是C
考点抽屉原理问题解析一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。
30、单选题
若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是( )。
A. yz-x
B. (x-y)(y-z)
C. x-yz
D. x(y+z)
参考答案: B
本题解释:
正确答案是B
考点
计算问题
解析
三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论:
(1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D;
(2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。
故正确答案为B。
标签
赋值思想分类分步
31、单选题
甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?( )
A. 3
B. 4
C. 5
D. 6
参考答案: B
本题解释:
【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。
32、单选题
一个空的容积为64 升的鼓形圆桶上有A、B 两孔,一种蒸馏水从A 孔流入同 时从B 孔流出,如果通过A 孔的流速为3 升/小时,那么在B 孔的流速为多少升时才能保证用96 小时恰好装满容器?( )
A. 4/3
B. 8/3
C. 7/3
D. 3/7
参考答案: C
本题解释:
【答案】C[解析]从A孔流入同时从B孔流出,设流速X,则容器实际蓄水速度为3-X,所以64/(3-X)=96,求出X=7/3。
33、单选题
173×173×173-162×162×162=( )
A. 926183
B. 936185
C. 926187
D. 926189
参考答案: D
本题解释:
正确答案是D
考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。
34、单选题
某市居民生活用电每月标准用电量的基本价格为每度0.50元,若每月用电量超过标准用电量,超出部分按其基本价格的80%收费,某户九月份用电84度,共交电费39.6元,则该市每月标准用电量为( )。
A. 60度
B. 65度
C. 70度
D. 75度
参考答案: A
本题解释:
【答案解析】基本价格的80%是0.5×0.8=0.4,设每月标准用电X度,则0.5X+(84-X)×0.4=39.6,解得X=60,选A。
35、单选题
甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?( )
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
正确答案是B
考点
行程问题
解析
解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。
解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。
解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。
公式:两运动体从两端同时出发,相向而行,不断往返:
第N次迎面相遇,两运动体路程和=全程×(2N-1);
第N次追上相遇,两运动体路程差=全程×(2N-1)。
标签
公式应用
36、单选题
一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是( )。
A. 12525
B. 13527
C. 17535
D. 22545
参考答案: A
本题解释:
【答案解析】直接代入,选A。
37、单选题
某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?( )
A. 88
B. 89
C. 90
D. 91
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。
38、单选题
百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?( )
A. 65
B. 70
C. 75
D. 80
参考答案: C
本题解释:
C设原价为x元,则80%x+25=x,x=75元。
39、单选题
某校按字母A到Z的顺序给班级编号,按班级编号加01、02、03……,给每位学生按顺序定学号,若A~K班级人数从15人起每班递增1名,之后每班按编号顺序递减2名,则第256名学生的学号是多少?( )
A. M12
B. N11
C. N10
D. M13
参考答案: D
本题解释:
正确答案是D
考点
多位数问题
解析
此题对应数列呈先升后降趋势,根据题意可明确给出班级人数数列,待求第256名学生的位置,由题意知A班有15人,B班有16人,……,递增到K班25人,然后L班23人,逐班减少。结合四个选项可知,第256名学生不是在M班,就是在N班,此即帮助限定范围,于是直接计算从A班到L班的学生总数为15+16+……+25+23=(15+25)÷2×11+23=243(人),距离256为13,可知第256名学生的学号为M13,故正确答案为D。
40、单选题
在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是( )。
A. 1644
B. 1779
C. 3406
D. 3541
参考答案: D
本题解释:
【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。
41、单选题
100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
42、单选题
某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?( )
A. 24
B. 25
C. 26
D. 27
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。
标签
构造调整
43、单选题
一个长方形,它的周长是32米,长是宽的3倍。这个长方形的面积是多少平方米?( )
A. 64
B. 56
C. 52
D. 48
参考答案: D
本题解释:
D设宽为x则长为3x,则2(x+3x)=32,则x=4,故面积为48平方米。
44、单选题
篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共( )种。
A. 18
B. 19
C. 20
D. 21
参考答案: D
本题解释:
D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。
45、单选题
六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分( )。
A. 93
B. 94
C. 95
D. 96
参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
46、单选题
一篇文章,现有甲、乙、丙三人,如果由甲、乙两人合作翻译,需要10小时完成,如果由乙、丙两人合作翻译,需要12小时完成。现在先由甲、丙两人合作翻译4小时,剩下的再由乙单独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,要多少个小时完成?( )
A. 15
B. 18
C. 20
D. 25
参考答案: A
本题解释:
正确答案 是A
考点工程问题解析设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。
47、单选题
一行10个人来到电影院看电影,前9人入坐之后,第十人无论怎么坐都至少有一个人与他相邻,那么电影院这排最多有多少座位?( )。
A. 10
B. 19
C. 26
D. 27
参考答案: D
本题解释:
D。本题可采用极端法。既然要第十人旁边一定有人,那么最极端的排法就是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9*3=27,所以选择D选项。
48、单选题
某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是( )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1
参考答案: B
本题解释:
正确答案是B
考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。
解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。
49、单选题
从12时到13时,钟的时针与分针可成直角的机会有( )。
A. 1次
B. 2次
C. 3次
D. 4次
参考答案: B
本题解释:
【答案解析】一个小时内成直角只有两次,选B。
50、单选题
受原材料涨价影响,某产品的总成本比之前上涨了1/15,而原材料成本在总成本中的比重提高了2.5个百分点,问原材料的价格上涨了多少?( )
A. 1/9
B. 1/10
C. 1/11
D. 1/12
参考答案: A
本题解释:
正确答案是A
考点
经济利润问题
解析
设原成本为15,则原材料涨价后成本变为16,设原材料价格为x,则有(x+1)/16-x/15=2.5%,解得x=9,则原材料的价格上涨了1/9。故正确答案为A。