1、单选题
现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
A. 7
B. 8
C. 9
D. 10
参考答案: A
本题解释:
正确答案是A
考点多位数问题解析要使分得最多花的人分到的花尽可能的少,那么其他人分到的花尽可能的多。5人分到的花应尽量接近,以保证分得最多花的人分到的花尽可能少,所以最好是5个连续的自然数,21÷5=4.2,所以5人先分花数为2、3、4、5、6。2+3+4+5+6=20,还剩1朵花未分出。剩下的1朵花只能分给之前分到6朵花的人。则分得最多的人至少分得7朵鲜花,正确答案为A。
2、单选题
一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量,在该市新迁入3万人之后,该水库只够维持15年的用水量,市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标?( )
A. 2/5
B. 2/7
C. 1/3
D. 1/4
参考答案: A
本题解释:
正确答案是A
考点
牛吃草问题
解析
假设原有水量为X,单位时间进水量Y,根据题意可得:X=(12-Y)×20,X=(15-Y)×15,解得X=180,Y=3。假设用30年可供N万人次,则可得,180=(N-3)×30,解得N=9。也即15万人的用水量相当于9万人,因此节水比例为2/5,故正确答案为A。
3、单选题
甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?( )
A. 780元
B. 890元
C. 1183元
D. 2083元
参考答案: A
本题解释:
【答案解析】最典型的代入型题目…根据题意可以知道总数和可以被3、4、5整除,满足的只有A。
4、单选题
4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子只能飞进一只鸟。若都不飞进自己的笼子里去,有多少种不同的飞法?( )。
A. 7
B. 8
C. 9
D. 10
参考答案: C
本题解释:
C。本题属于计数问题。本题是排列组合中的错位问题,根据对错位问题数字的记忆,答案应为9种。所以选择C选项。
计算过程:设四只小鸟为1,2,3,4,则1有3个笼可选择,不妨假设1进了2号笼,则2也有3个笼可选择,不妨设2进了3号笼,则剩下鸟3、4和笼1、4只有一种选择。所以一共有3×3=9种。
5、单选题
某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额( )。
A. 多1000元
B. 少1000元
C. 多10%
D. 少10%
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。
标签
逆向考虑
6、单选题
一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?( )
A. 1894年
B. 1892年
C. 1898年
D. 1896年
参考答案: B
本题解释:
正确答案是B
考点
年龄问题
解析
由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。
7、单选题
某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口( )。
A. 30万
B. 31.2万
C. 40万
D. 41.6万
参考答案: A
本题解释:
【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。
8、单选题
一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元( )
A. 154
B. 196
C. 392
D. 490
参考答案: C
本题解释:
【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
9、单选题
某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( )
A. 120
B. 144
C. 177
D. 192
参考答案: A
本题解释:
正确答案是A
考点
容斥原理问题
解析
假设只参加一种考试的有X人,则可知:X+46×2+24×3=63+89+47,可知X=35,因此接受调查的学生共有35+46+24+15=120人。故正确答案为A。
注:将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
10、单选题
小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有( )。
A. 3道
B. 4道
C. 5道
D. 6道
参考答案: D
本题解释:
正确答案是D
考点容斥原理问题解析由“小明答对的题目占题目总数的3/4”,可知题目总数是4的倍数;由“他们两人都答对的题目占题目总数2/3”,可知题目总数是3的倍数。因此,题目总数是12的倍数。小强做对了27题,超过题目总数的2/3,则题目总数是36。根据两集合容斥原理公式得两人都没有答对的题目共有36-(36×3/4+27-36×2/3)=6道,故正确答案为D。
11、单选题
某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?( )
A. 34
B. 36
C. 35
D. 37
参考答案: C
本题解释:
正确答案是C
考点
平均数问题
解析
A和B部门各自平均年龄为38、24岁,混合后平均年龄为30岁,假定两部门的人数分别为x、y,可得38x+24y=30(x+y),可得x:y=3:4,类似可知B和C两部门的人数之比为4:5。据此分别对A、B、C三部门的人数赋值为3、4、5,则总的平均年龄为(3×38+4×24+5×42)÷(3+4+5)=35(岁)。故正确答案为C。
标签
赋值思想
12、单选题
某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?( )
A. 1104
B. 1150
C. 1170
D. 1280
参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。
13、单选题
某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?( )
A. 21
B. 24
C. 17.25
D. 21.33
参考答案: A
本题解释:
正确答案是A
考点
分段计算问题
解析
在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大,即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨。故正确答案为A。
14、单选题
百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?( )
A. 65
B. 70
C. 75
D. 80
参考答案: C
本题解释:
C设原价为x元,则80%x+25=x,x=75元。
15、单选题
每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?( )
A. 40分钟
B. 48分钟
C. 56分钟
D. 64分钟
参考答案: B
本题解释:
【答案解析】分别求出跑1米所用的时间。60/5000=张三,60/7000=李四,60/9000=王五。张三跑完200米要12/5分钟(2.4),李四需要12/7(1.7)分钟,王五需要4/3(1.3)分钟。张与李圈相差0.7分钟,与王相差1.1分钟,李与王差0.6分钟。得出这样的关系后可以算出张跑到第N圈时(N>4)李和王刚好也在A点,他们2.4分钟时的位移分别为:200m、282m、365m,然后求出圈差的位移82M.165M然后用200分别除以82.165,求出李需要2.44次的2.4分钟就可以再跑200米,王需要1.2次的2.4分钟,然后通分求出共需要多少个2.4分钟就行了。
16、单选题
甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?( )
A. 30
B. 240
C. 480
D. 720
参考答案: D
本题解释:
【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。
17、单选题
某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?( )
A. 20.4
B. 30.6
C. 34.5
D. 44.2
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。
标签
赋值思想
18、单选题
从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同。
A. 21
B. 22
C. 23
D. 24
参考答案: C
本题解释:
正确答案是C
考点抽屉原理问题解析一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但 任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。
19、单选题
根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是( )。
A. 周一或周三
B. 周三或周日
C. 周一或周四
D. 周四或周日
参考答案: D
本题解释:
正确答案是D
考点
星期日期问题
解析
8月份为31天,有22个工作日,则休息日有9天,而31天大于四周小于五周,故有两种情况:
①1号为周日,保证休息日为1+2×4=9天;
②31号为周六,保证休息日为2×4+1=9天,则3号为周六,此时1号为周四。
故正确答案为D。
标签
分类分步
20、单选题
有一食品店某天购进了6箱食品,分别装着饼干和面包,重量分别为8、9、16、20、22、27千克。该店当天只卖出1箱面包,在剩下的5箱中饼干的重量是面包的两倍,则当天食品店购进了( )千克面包。
A. 44
B. 45
C. 50
D. 52
参考答案: D
本题解释:
正确答案是D
考点和差倍比问题解析由剩下的饼干重量是面包的两倍可知,剩下5箱的总重量一定能被3整除;6箱的总重量是8+9+16+20+22+27=102千克,也能被3整除,因此卖掉的一箱面包的重量也能被3整除,只能是9千克或27千克。若卖掉的一箱面包的重量是9千克,则剩下的面包重(102-9)÷3=31千克,剩余的各箱重量无法组合得到31。所以卖出的面包重27千克,剩余面包重(102-27)÷3=25千克。因此共购进了27+25=52千克面包,故正确答案为D。
21、单选题
科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?( )
A. 4
B. 5
C. 6
D. 7
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
22、单选题
一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?( )
A. 20%;
B. 30%;
C. 40%;
D. 50%;
参考答案: D
本题解释:
【答案解析】:选D,设原价X,进价Y,那X×80%-Y=Y×20%,解出X=1.5Y所求为[(X-Y)/Y]×100%=[(1.5Y-Y)/Y]×100%=50%
23、单选题
一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?( )
A. 14%
B. 17%
C. 16%
D. 15%
参考答案: D
本题解释:
正确答案是D
考点
浓度问题
解析
在蒸发的过程中,溶液的量发生变化,但其中溶质保持不变,因此将溶质作为解题突破口,给溶质赋值。为方便后面的计算,设其溶质为60,则可知其浓度在10%时,溶液量为600,其浓度在12%时,溶液量为500。这说明在变化过程中蒸发掉了水为100。因此第三次蒸发同样多的水后,溶液还剩400,故其浓度为15%。故正确答案为D。
标签
赋值思想
24、单选题
四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:( )
A. 60;
B. 65;
C. 70;
D. 75;
参考答案: A
本题解释:
【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:
(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。
(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。
(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种
25、单选题
一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务,那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸需求。
A. 26
B. 27
C. 28
D. 29
参考答案: A
本题解释:
正确答案是A
考点统筹规划问题解析设三辆汽车分别为甲、乙、丙车;五个工厂分别为A、B、C、D、E厂,则最初状态甲、乙、丙三车上人数为0,五工厂分别有人7、9、4、10、6人。我们在五个工厂都减少1名装卸工时,五工厂共减少5人,而每辆车上的人数各增加1人,车上共增加3人,所以装卸工的总人数减少2人。当车上增加到4人,C厂剩余的人数为0,此时每辆车上的人数每增加1人,车上共增加3人,而五工厂共减少4人,所以装卸工的总人数仍减少。当车上增加到6人,C、E厂剩余的人数为0,此时每车上的人数每增加1人,车上共增加3人,而五工厂共减少3人,所以装卸工的总人数不变。当车上增加到7人,A、C、E厂剩余的人数为0,此时每辆车上的人数如果再每增加1人,车上共增加3人,而五工厂共减少2人,所以装卸工的总人数增加。所以当车上的人数为6人(或7人)的时候,装卸工的总人数最少。如果每个车上有6个人,A、B、C、D、E厂剩余人数分别为1、3、0、4、0,三辆车上共有18人,总共需装卸工26人。如果每个车上有7个人,A、B、C、D、E厂剩余人数分别为0、2、0、3、0,三辆车上共有21人,总共也需装卸工26人。故正确答案为A。
注释:有M家汽车负担N家工厂的运输任务,当M
26、单选题
已知甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?( )
A. 75
B. 87
C. 174
D. 67
参考答案: B
本题解释:
正确答案是B
考点
和差倍比问题
解析
由“甲的书有13%是专业书”可知,甲的专业书=甲的书×13%,所以甲的书是100的倍数,甲的非专业书是87的倍数,排除A、D。由“乙的书有12.5%是专业书”可知,乙的专业书=乙的书×12.5%=乙的书×1/8,所以乙的书是8的倍数。结合选项,若甲的专业书为174本,则甲有200本书,那么乙的书有60本,不是8的倍数,排除C,故正确答案为B。
标签
数字特性
27、单选题
173×173×173-162×162×162=( )
A. 926183
B. 936185
C. 926187
D. 926189
参考答案: D
本题解释:
正确答案是D
考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。
28、单选题
(101+103+…+199)-(90+92+…+188)=( )。
A. 100
B. 199
C. 550
D. 990
参考答案: C
本题解释:
C[解析]提取公因式法。101-90=11,103-92=11,……,199-188=11,总计有50个这样的算式,所以50×11=550,选择C。
29、单选题
某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?( )
A. 1200 双
B. 1300 双
C. 1400 双
D. 1500 双
参考答案: D
本题解释:
【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
30、单选题
一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?( )
A. 10米/秒
B. 15米/秒
C. 25米/秒
D. 30米/秒
参考答案: A
本题解释:
【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。
31、单选题
乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要( )。
A. 8.19小时
B. 10小时
C. 14.63小时
D. 15小时
参考答案: B
本题解释:
正确答案是B
考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。
32、单选题
河道赛道场长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?( )
A. 48
B. 50
C. 52
D. 54
参考答案: C
本题解释:
【答案】C。解析:甲船顺水速度为2+6=8米/秒,逆水速度为6-2=4米/秒;乙船顺水速度为2+4=6米/秒,逆水速度为4-2=2米/秒。
33、单选题
有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是( )。
A. 11点整
B. 11点5分
C. 11点10分
D. 11点15分
参考答案: C
本题解释:
正确答案是C
考点钟表问题解析慢钟每小时比快钟慢3分钟,说明慢钟与快钟的速度比为57:60,早上4点30分到上午10点50分走过380分钟,设快钟走了x分钟,有380:x=57:60,解得x=400,即快钟走过6小时40分钟,此时的时间为11点10分,故正确答案为C。
34、单选题
一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?( )
A. 6秒钟
B. 6.5秒钟
C. 7秒钟
D. 7.5秒钟
参考答案: D
本题解释:
【答案解析】解析:追击问题的一种。坐在慢车看快车=>可以假定慢车不动,此时,快车相对速度为V(快)+V(慢),走的路程为快车车长200;同理坐在快车看慢车,走的距离为250,由于两者的相对速度相同=>250/x=200/6=>x=7.5(令x为需用时间)。
35、单选题
六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分( )。
A. 93
B. 94
C. 95
D. 96
参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
36、单选题
小赵,小钱,小孙一起打羽毛球,每局两人比赛,另一人休息,三人约定每一局的输方下一局休息,结束时算了一下,小赵休息了2局,小钱共打了8局,小孙共打了5局,则参加第9局比赛的是( )。
A. 小钱和小孙
B. 小赵和小钱
C. 小赵和小孙
D. 以上皆有可能
参考答案: B
本题解释:
正确答案是B
考点
统筹规划问题
解析
本题关键在于三个人打羽毛球,一个人休息的时候必然是另外两个人比赛的时候。因此条件“小赵休息了2局”,说明小钱和小孙对战了2局,则两人其余的比赛都是和小赵进行的,于是总的比赛局数为8+5-2=11局。三人比赛中,任何一个人不可能连续休息两场,也即每个人的休息场次只能是间隔的,而11局比赛中小孙打了5局,休息了6局,那么他只能是这11局中的第2、4、6、8、10局中上场。因此第9局比赛中小孙没有上场,也即参加比赛的是小赵和小钱。故正确答案为B。
37、单选题
A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?()
A. 9
B. 25
C. 49
D. 81
参考答案: D
本题解释:
【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
38、单选题
某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为( )。
A. 5:4:3
B. 4:3:2
C. 4:2:1
D. 3:2:1
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:
3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。
秒杀技
得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。
标签
直接代入
39、单选题
某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?( )
A. 10
B. 11
C. 12
D. 13
参考答案: B
本题解释:
正确答案是B
考点
趣味数学问题
解析
65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11,故正确答案为B。
40、单选题
受原材料涨价影响,某产品的总成本比之前上涨了1/15,而原材料成本在总成本中的比重提高了2.5个百分点,问原材料的价格上涨了多少?( )
A. 1/9
B. 1/10
C. 1/11
D. 1/12
参考答案: A
本题解释:
正确答案是A
考点
经济利润问题
解析
设原成本为15,则原材料涨价后成本变为16,设原材料价格为x,则有(x+1)/16-x/15=2.5%,解得x=9,则原材料的价格上涨了1/9。故正确答案为A。
41、单选题
一个班的学生排队,如果排成3人一排的队列,则比2人一排的队列少8排;如果排成4人一排的队列,则比3人一排的队列少5排,这个班的学生如果按5人一排来排队的话,队列有多少排?( )
A. 9
B. 10
C. 11
D. 12
参考答案: C
本题解释:
正确答案是C
考点
不定方程问题
解析
注意到几人一排时,未必恰好整除,而在不整除的时候剩余人数仍构成一排,据此可知本题若列方程将不能得到一个确切方程,故解题方法为代入法。
将A代入,则学生人数在41到45之间,择其最大者进行验证。45人满足排成3人一排的队列比排成2人一排的队列少8排,但排成4人一排的队列比3人一排的队列少3排,故45人不正确。并且此时排成4人一排的队列比3人一排的队列所少的排数低于题中给出的5,而要想排数差值增大,则需学生人数更多,因此41到45之间的数字肯定都不符合要求,故A不正确。(这也是为什么要择所得数字中最大者验证。)
将B代入,则学生人数在46到50之间,择其最大者进行验证。学生人数为50人时,排成4人一排的队列比3人一排的队列少4排,故不符合,且类似上面分析可知B选项不正确。
将C选项代入,则学生人数在51到55之间,择其最大者进行验证。学生人数为55人时,排成4人一排的队列比3人一排的队列少5排,符合要求,而其排成3人一排的队列比2人一排的队列少9排,因此学生人数应少于55人。依次验证其余可知学生人数为52人满足要求。故正确答案为C。
42、单选题
把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有( )种不同的分法。
A. 4
B. 5
C. 6
D. 7
参考答案: B
本题解释:
正确答案是B
考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。
43、单选题
李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?( )
A. 25
B. 50
C. 30
D. 20
参考答案: D
本题解释:
D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。
44、单选题
甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?( )
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
正确答案是B
考点
行程问题
解析
解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。
解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。
解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。
公式:两运动体从两端同时出发,相向而行,不断往返:
第N次迎面相遇,两运动体路程和=全程×(2N-1);
第N次追上相遇,两运动体路程差=全程×(2N-1)。
标签
公式应用
45、单选题
用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是( )。
A. 15125
B. 849420
C. 786780
D. 881721
参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。
46、单选题
某单位今年新进了3 个工作人员,可以分配到3 个部门,但每个部门至多只能接收2 个人,问:共有几种不同的分配方案?( )
A. 12
B. 16
C. 24
D. 以上都不对
参考答案: C
本题解释:
【答案】C[解析]每部门都有三种选择,再减去3人同一部门的情况,所以3的3次方-3=24,选C。
47、单选题
一个车队有三辆汽车, 担负着五家工厂的运输任务,这五家工厂分别需要 7、9、4、10、6 名装卸工,共计 36 名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务。那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸需求?( )
A. 26
B. 27
C. 28
D. 29
参考答案: A
本题解释:
【答案】A[解析]要求最少,那么三辆车分别装五家工厂里面最大的三个需求量,则可以满足条件,分别装10、9、7, 所以是10+9+7=26,选A。
48、单选题
当第29届奥运会于北京时间2008年8月8日20时正式开幕时,全世界和北京同一天的国家占( )。
A. 全部
B. 1/2
C. 1/2以上
D. 1/2以下
参考答案: A
本题解释:
正确答案是A
考点
星期日期问题
解析
解析1:
全球分为东西各12区。按照东加西减的原理,北京东8区晚8点时,东12区应该是8日夜里24点;此时西12区时间是从东12区相应减一天,为7日24点,所以全球正好都处在8日,故正确答案为A。
解析2:
15个经度相差1个小时,北京属于东8区,当北京在20时的时候,有20个区的地区在0时之后(即同一天),也就是有20×15=300度的地区在0—20时,另外有20~24时的地区,刚好是4个区即4×15=60度,300+60=360,即整个地球,故正确答案为A。
49、单选题
共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有( )个。
A. 2
B. 3
C. 5
D. 7
参考答案: A
本题解释:
正确答案是A
考点不定方程问题解析设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
50、单选题
一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?( )
A. 12
B. 8
C. 6
D. 4
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。