1、单选题
一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少?( )
A. 14
B. 16
C. 15
D. 13
参考答案: A
本题解释:
正确答案是A
考点
工程问题
解析
设工作总量为20,则甲每天挖1,乙每天挖2,因此每轮工作量为3,于是可知前6轮完整完成,共完成工作量18,还剩下2,此时轮到甲继续工作,甲工作一天后还剩下1,还需要乙工作半天,所以一共挖了14天,故正确答案为A。
标签
赋值思想
2、单选题
桌面上有两个半径分别为2厘米和40厘米的圆环,让小圆环沿着大圆环外边缘滚动一圈,则小圆环滚动的圈数是:( )
A. 10
B. 20
C. 40
D. 80
参考答案: B
本题解释:
【答案解析】圆的周长之比等于半径之比,所以大圆的周长是小圆的20倍,即小圆需要滚动20圈。
3、单选题
一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?( )
A. 16天
B. 20天
C. 22天
D. 24天
参考答案: A
本题解释:
正确答案是A
考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。
解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
4、单选题
为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?( )
A. 42.5元
B. 47.5元
C. 50元
D. 55元
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
解析1:先将15吨全部看成超出的部分,则按照每吨5元收费,共计收费75元,而实际交水费62.5元,少交12.5元。这是因为标准量以内每吨2.5元,比整体看做超出部分计价少交2.5元,因此标准用水量为5吨。因此12吨应交水费为5×2.5+7×5=47.5元。故正确答案为B。
解析2:设标准用水量上限为A吨,则有2.5A+5×(15-A)=62.5,解得A=5。用水12吨,应交水费2.5×5+5×(12-5)=47.5元。故正确答案为B。
秒杀技
将12吨用水看成标准量以内,应交水费为12×2.5=30元,但四个选项中没有此值,这说明12吨是超过标准用水量。那么15吨必然也是超过标准用水量,要计算12吨应交的水费,只需从15吨所交62.5元中扣除多超出的3吨的价钱即15元即可,也即为47.5元。故正确答案为B。
标签
差异分析
5、单选题
某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?( )
A. 88
B. 89
C. 90
D. 91
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。
6、单选题
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?( )
A. 8%
B. 9%
C. 10%
D. 11%
参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
7、单选题
现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有( )。
A. 9
B. 10
C. 11
D. 12
参考答案: B
本题解释:
【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。
8、单选题
小红把平时节省下来的全部五分硬币先围成一个三角形,正好用完,后来又改围城一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( )。
A. 1元
B. 2元
C. 3元
D. 4元
参考答案: C
本题解释:
正确答案是C
考点和差倍比问题解析设围成三角形每条边上有x个硬币,每个顶点重复1次,则围成三角形硬币总数为3(x-1)个,同理围成正方形硬币总数为4(x-5-1),3(x-1)=4(x-5-1),解得x=21,因此共有硬币3×(21-1)=60个,总价值3元。故正确答案为C。
秒杀技围成三角形正好用完说明硬币总数一定是3的倍数,因此只有C符合。
9、单选题
由1、2、3组成的没有重复数字的所有三位数之和为多少?( )
A. 1222
B. 1232
C. 1322
D. 1332
参考答案: D
本题解释:
【答案】D。解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些数字的个位数字之和是(1+2+3)×2=12,同理所有这些数字的十位、百位数字之和都是12,所以所有这些数字之和是12+12×10+12×100=1332,选择D。
10、单选题
在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是( )秒。
A. 80
B. 100
C. 120
D. 140
参考答案: D
本题解释:
【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。
11、单选题
一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?( )
A. 20%;
B. 30%;
C. 40%;
D. 50%;
参考答案: D
本题解释:
【答案解析】:选D,设原价X,进价Y,那X×80%-Y=Y×20%,解出X=1.5Y所求为[(X-Y)/Y]×100%=[(1.5Y-Y)/Y]×100%=50%
12、单选题
某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )
A. 36
B. 37
C. 39
D. 41
参考答案: D
本题解释:
正确答案是D
考点
函数最值问题
解析
假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。
标签
数字特性
13、单选题
书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?( )
A. 小说
B. 教材
C. 工具书
D. 科技书
参考答案: A
本题解释:
正确答案是A
考点
周期问题
解析
循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本,则最右边的一本书是小说,故正确答案为A。
14、单选题
某原料供应商对购买其原料的顾客实行如下优惠措施:①一次购买金额不超过1万元,不予优惠;②一次购买金额超过1万元,但不超过3万元,给九折优惠;③一次购买金额超过3万元,其中3万元九折优惠,超过3万元部分八折优惠。某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他一次购买同样数量的原料,可以少付:( )
A. 1460元
B. 1540元
C. 3780元
D. 4360元
参考答案: A
本题解释:
【解析】A。第一次购买原料付款7800元,原料的总价值应为7800元,第二次购买时付款26100元,原料的总价值应为26100÷0.9=29000元。如果要将两次购买变成一次购买,则总价值应为7800+29000=36800元,而应该付款额为30000×0.9+6800×0.8=32440元,一次性购买比分两次购买可以节约7800+26100-32440=1460元。
15、单选题
一行10个人来到电影院看电影,前9人入坐之后,第十人无论怎么坐都至少有一个人与他相邻,那么电影院这排最多有多少座位?( )。
A. 10
B. 19
C. 26
D. 27
参考答案: D
本题解释:
D。本题可采用极端法。既然要第十人旁边一定有人,那么最极端的排法就是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9*3=27,所以选择D选项。
16、单选题
某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢4/5,则此人追上小偷需要( )。
A. 20秒
B. 50秒
C. 95秒
D. 110秒
参考答案: D
本题解释:
正确答案是D
考点行程问题解析根据题中三者速度的比例关系,设此人、小偷和汽车的速度分别为2、1、10,10秒钟后此人下车时,与小偷的距离为10×(10+1)=110,与小偷的速度差为1,因此所需时间为110秒,故正确答案为D。
17、单选题
某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是( )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1
参考答案: B
本题解释:
正确答案是B
考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。
解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。
18、单选题
两个数的差是2345,两数相除的商是8,求这两个数之和( )。
A. 2353
B. 2896
C. 3015
D. 3456
参考答案: C
本题解释:
C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
19、单选题
超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?( )
A. 3
B. 4
C. 7
D. 13
参考答案: D
本题解释:
正确答案是D
考点
不定方程问题
解析
设大盒有x个,小盒有y个,则可得12x+5y=99。因为12x是偶数,99是奇数,所以5y是奇数,y是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。当x=2时,y=15,符合题意,此时y-x=13;当x=7时,y=3,x+y=10,不满足共用十多个盒子,排除。故正确答案为D。
标签
数字特性
20、单选题
甲、乙两个容器均有50厘米深,底面积之比为5:4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是( )。
A. 20厘米
B. 25厘米
C. 30厘米
D. 35厘米
参考答案: B
本题解释:
正确答案是B
考点几何问题解析设注入水后的水深为y厘米,则根据注入水同样多,可知(y-9)×5=(y-5)×4,解得y=25,故正确答案为B。
21、单选题
某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?( )
A. 10850
B. 10950
C. 11050
D. 11350
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。
标签
差异分析
22、单选题
李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?( )
A. 25
B. 50
C. 30
D. 20
参考答案: D
本题解释:
D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。
23、单选题
六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分( )。
A. 93
B. 94
C. 95
D. 96
参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
24、单选题
一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?( )
A. 6秒钟
B. 6.5秒钟
C. 7秒钟
D. 7.5秒钟
参考答案: D
本题解释:
【答案解析】解析:追击问题的一种。坐在慢车看快车=>可以假定慢车不动,此时,快车相对速度为V(快)+V(慢),走的路程为快车车长200;同理坐在快车看慢车,走的距离为250,由于两者的相对速度相同=>250/x=200/6=>x=7.5(令x为需用时间)。
25、单选题
某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?( )
A. 8
B. 10
C. 12
D. 15
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。
秒杀技
由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
26、单选题
现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( )。
A. 27人
B. 25人
C. 19人
D. 10
参考答案: B
本题解释:
【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。
27、单选题
一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?( )
A. 10米/秒
B. 15米/秒
C. 25米/秒
D. 30米/秒
参考答案: A
本题解释:
【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。
28、单选题
某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?( )
A. 1104
B. 1150
C. 1170
D. 1280
参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。
29、单选题
有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用( )
A. 19天
B. 18天
C. 17天
D. 16天
参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。
30、单选题
根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是( )。
A. 周一或周三
B. 周三或周日
C. 周一或周四
D. 周四或周日
参考答案: D
本题解释:
正确答案是D
考点
星期日期问题
解析
8月份为31天,有22个工作日,则休息日有9天,而31天大于四周小于五周,故有两种情况:
①1号为周日,保证休息日为1+2×4=9天;
②31号为周六,保证休息日为2×4+1=9天,则3号为周六,此时1号为周四。
故正确答案为D。
标签
分类分步
31、单选题
有一个正方形花池,周围用边长25cm的方砖铺了一条宽1.5米的小路,共用1776块。花池的面积是多少平方米?( )
A. 111
B. 289
C. 400
D. 10404
参考答案: B
本题解释:
【答案】B[解析]水池周围的面积是0.25×0.25×1776=111, 设外围正方形边长X,花池小正方形边长Y,则有X2-Y2=111, 20的平方是400,17的平方是289,400-289刚好是111(熟记20以内平方的好处…),所以花池面积就是289,选B。
32、单选题
任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?( )
A. 0
B. 1
C. 2
D. 3
参考答案: B
本题解释:
【答案】B。解析:此题可以用特值法,选择特殊值64,反复运算后得到最终结果为1。
33、单选题
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?( )
A. 329
B. 350
C. 371
D. 504
参考答案: A
本题解释:
正确答案是A
考点
和差倍比问题
解析
设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。
秒杀技
由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。
标签
数字特性
34、单选题
从12时到13时,钟的时针与分针可成直角的机会有( )。
A. 1次
B. 2次
C. 3次
D. 4次
参考答案: B
本题解释:
【答案解析】一个小时内成直角只有两次,选B。
35、单选题
某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?( )
A. 18
B. 16
C. 12
D. 9
参考答案: C
本题解释:
正确答案是C
考点
和差倍比问题
解析
设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。
秒杀技
有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。
36、单选题
某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?( )
A. 34
B. 36
C. 35
D. 37
参考答案: C
本题解释:
正确答案是C
考点
平均数问题
解析
A和B部门各自平均年龄为38、24岁,混合后平均年龄为30岁,假定两部门的人数分别为x、y,可得38x+24y=30(x+y),可得x:y=3:4,类似可知B和C两部门的人数之比为4:5。据此分别对A、B、C三部门的人数赋值为3、4、5,则总的平均年龄为(3×38+4×24+5×42)÷(3+4+5)=35(岁)。故正确答案为C。
标签
赋值思想
37、单选题
某成衣厂对9名缝纫工进行技术评比,9名工人的得分一给好成等差数列,9人的平均得分是86分,前5名工人的得分之和是460分,那么前7名工人的得分之和是多少?( )
A. 602
B. 623
C. 627
D. 631
参考答案: B
本题解释:
正确答案是B
考点
平均数问题
解析
由于前5名工人的得分之和是460分,则第三名工人的得分=460÷5=92(分),9人的平均得分是86分,即第五名工人的得分为86分,所以第四名的得分为(92+86)÷2=89(分),所以前7名的总分为89×7=623(分),故正确答案为B。
注释:等差数列的平均数等于其中位数的值。
38、单选题
某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?( )
A. 1.23
B. 1.80
C. 1.93
D. 2.58
参考答案: D
本题解释:
【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。
39、单选题
有一串数:1,3,8,22,60,164,448,……;其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是( )。
A. 1
B. 2
C. 3
D. 4
参考答案: C
本题解释:
C。本题属于周期类问题。用数列的前几项除以9取余数,得到138462705138……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。
40、单选题
某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少( )
A. 6
B. 3
C. 5
D. 4
参考答案: A
本题解释:
A【解析】该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。
41、单选题
有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是( )。
A. 11点整
B. 11点5分
C. 11点10分
D. 11点15分
参考答案: C
本题解释:
正确答案是C
考点钟表问题解析慢钟每小时比快钟慢3分钟,说明慢钟与快钟的速度比为57:60,早上4点30分到上午10点50分走过380分钟,设快钟走了x分钟,有380:x=57:60,解得x=400,即快钟走过6小时40分钟,此时的时间为11点10分,故正确答案为C。
42、单选题
某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( )
A. 120
B. 144
C. 177
D. 192
参考答案: A
本题解释:
正确答案是A
考点
容斥原理问题
解析
假设只参加一种考试的有X人,则可知:X+46×2+24×3=63+89+47,可知X=35,因此接受调查的学生共有35+46+24+15=120人。故正确答案为A。
注:将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
43、单选题
科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?( )
A. 4
B. 5
C. 6
D. 7
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
44、单选题
200除500,商2余100,如果被除数和除数都扩大3倍,则余数是( )。
A. 100
B. 200
C. 300
D. 100000
参考答案: C
本题解释:
【解析】商不变,余数跟着扩大3倍,所以是300,选C。
45、单选题
某校按字母A到Z的顺序给班级编号,按班级编号加01、02、03……,给每位学生按顺序定学号,若A~K班级人数从15人起每班递增1名,之后每班按编号顺序递减2名,则第256名学生的学号是多少?( )
A. M12
B. N11
C. N10
D. M13
参考答案: D
本题解释:
正确答案是D
考点
多位数问题
解析
此题对应数列呈先升后降趋势,根据题意可明确给出班级人数数列,待求第256名学生的位置,由题意知A班有15人,B班有16人,……,递增到K班25人,然后L班23人,逐班减少。结合四个选项可知,第256名学生不是在M班,就是在N班,此即帮助限定范围,于是直接计算从A班到L班的学生总数为15+16+……+25+23=(15+25)÷2×11+23=243(人),距离256为13,可知第256名学生的学号为M13,故正确答案为D。
46、单选题
当第29届奥运会于北京时间2008年8月8日20时正式开幕时,全世界和北京同一天的国家占( )。
A. 全部
B. 1/2
C. 1/2以上
D. 1/2以下
参考答案: A
本题解释:
正确答案是A
考点
星期日期问题
解析
解析1:
全球分为东西各12区。按照东加西减的原理,北京东8区晚8点时,东12区应该是8日夜里24点;此时西12区时间是从东12区相应减一天,为7日24点,所以全球正好都处在8日,故正确答案为A。
解析2:
15个经度相差1个小时,北京属于东8区,当北京在20时的时候,有20个区的地区在0时之后(即同一天),也就是有20×15=300度的地区在0—20时,另外有20~24时的地区,刚好是4个区即4×15=60度,300+60=360,即整个地球,故正确答案为A。
47、单选题
百货商场 折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?( )
A. 65
B. 70
C. 75
D. 80
参考答案: C
本题解释:
C设原价为x元,则80%x+25=x,x=75元。
48、单选题
教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?( )
A. 15
B. 12
C. 10
D. 9
参考答案: A
本题解释:
A【解析】设最初有x名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。
49、单选题
已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有( )。
A. 10
B. 11
C. 12
D. 9
参考答案: B
本题解释:
【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。
50、单选题
一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元( )
A. 154
B. 196
C. 392
D. 490
参考答案: C
本题解释:
【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。