1、计算题 在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v0的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场。已知OP = h,不计粒子的重力。

⑴ 求粒子垂直射线OA经过Q点的速度vQ;
⑵ 求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;
⑶ 粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场……,求粒子从P点开始经多长时间能够运动到O点?
2、计算题 (10分)如图,在平面直角坐标系xOy内,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限以ON为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B。一质量为m、电荷量为q的带正电的粒子,从y轴正半轴上y = h处的M点,以速度v0垂直于y轴射入电场,经x轴上x = 2h处的P点进入磁场,最后以垂直于y轴的方向射出磁场。不计粒子重力。求

(1)电场强度大小E;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从进入电场到离开磁场经历的总时间t。
3、计算题 如图所示,真空中有一以(r,0)为圆心、半径为r的圆柱形匀强磁场区域,磁场的磁感应强度大小为B方向垂直纸面向里,在y≥r的范围内,有方向向左的匀强电场,电场强度大小E。从O点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,已知质子的电量为e,质量为m,质子在磁场中的偏转半径也为r,不计重力及阻力作用。求:
(1)质子进入磁场时的速度大小;
(2)速度方向沿x轴正方向射入磁场的质子,到达y轴所需的时间;
(3)速度方向与x轴正方向成30°角(如图中所示)射入磁场的质子,到达y轴时的位置坐标。

4、计算题 如图所示,abcd构成一个边长为L的正方形区域,在ac连线的右下方存在场强大小为E、方向垂直于ad向上的匀强电场,在?abc区域内(含边界)存在方向垂直于纸面向里的匀强磁场,在?abc区域外、ac连线的左上方存在方向垂直于纸面向外的匀强磁场,两磁场区域的磁感应强度大小相等.现有两个可视为质点、质量均为m、电荷量均为q的带正电粒子同时从a点射出,粒子甲的初速度方向由a指向d,粒子乙的初速度方向由a指向c,当乙经b到达c点时,刚好与只在电场中运动的甲相遇.若空间为真空,不计粒子重力和粒子间的相互作用力,忽略粒子运动对电、磁场产生的影响。求:

(1)甲的速率v甲和甲从a到c经历的时间t。
(2)乙的速率v乙和磁感应强度大小B满足的条件。
5、简答题 (17分)
如图所示,在x轴上方有水平向左的匀强电场,电场强度为E1;下方有竖直向上的匀强电场,电场强度为E2,且
。在x轴下方的虚线(虚线与茗轴成45°角)右侧有垂直纸面向外的匀强磁场,磁感应强度为B。有一长为L的轻绳一端固定在第一象限内的O′点,且可绕O′点在竖直平面内转动;另一端拴有一质量为m的小球,小球带电量为+q。OO′与x轴成45°角,其长度也为L。先将小球放在O′点正上方,从绳恰好绷直处由静止释放,小球刚进人有磁场的区域时将绳子断开。
试求:
(1)绳子第一次刚拉直还没有开始绷紧时小球的速度大小;
(2)小球刚进入有磁场的区域时的速度大小;
(3)小球从进入有磁场的区域到第一次打在x轴上经过的时间。