1、计算题 有一种“双聚焦分析器”质谱仪,工作原理如图所示。加速电场的电压为U,静电分析器中有辐向会聚电场,即与圆心O1等距各点的电场强度大小相同,方向沿径向指向圆心O1;磁分析器中以O2为圆心、圆心角为90°的扇形区域内,分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行.由离子源发出一个质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后,从M点沿垂直于该点的电场方向进入静电分析器,在静电分析器中,离子沿半径为R的四分之一圆弧轨道做匀速圆周运动,并从N点射出静电分析器.而后离子由P点沿着既垂直于磁分析器的左边界,又垂直于磁场方向射入磁分析器中,最后离子沿垂直于磁分析器下边界的方向从Q点射出,并进入收集器.测量出Q点与圆心O2的距离为d,位于Q点正下方的收集器入口离Q点的距离为d/2.(题中的U、m、q、R、d都为已知量)

(1)求静电分析器中离子运动轨迹处电场强度E的大小;
(2)求磁分析器中磁感应强度B的大小;
(3)现将离子换成质量为4m ,电荷量仍为q的另一种正离子,其它条件不变.磁分析器空间足够大,离子不会从圆弧边界射出,收集器的位置可以沿水平方向左右移动,要使此时射出磁分析器的离子仍能进入收集器,求收集器水平移动的距离.
2、计算题 如图,相距为R的两块平行金属板M、N正对放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线且水平,且s2O=R。以O为圆心、R为半径的圆形区域内存在大小为B、方向垂直纸面向外的匀强磁场。收集板D上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。质量为m、带电量为+q的粒子,经s1无初速进入M、N间的电场后,通过s2进入磁场。粒子重力不计。

【小题1】若粒子恰好打在收集板D的中点上,求M、N间的电压值U;
【小题2】求粒子从s1到打在D的最右端经历的时间t。
3、填空题 正方形导线框abcd,匝数为10匝,边长为20cm,在磁感强度为0.2T的匀强磁场中围绕与B方向垂直的转轴匀速转动,转速为120 r/min。当线框从平行于磁场位置开始转过90°时,线圈中磁通量的变化量是____wb,平均感应电动势为____V。
4、计算题 如图甲所示,竖直放置的金属板A、B中间开有小孔,小孔的连线沿水平放置的金属板C、D的中轴线,粒子源P可以连续地产生质量为m、电荷量为q的带正电粒子(初速不计),粒子在A、B间被加速后,再进入金属板C、D间偏转并均能从此电场中射出.已知金属板A、B间的电压UAB=U0,金属板C、D长度为L,间距d = .两板之间的电压UCD随时间t变化的图象如图乙所示.在金属板C、D右侧有一个垂直纸面向里的匀强磁场分布在图示的半环形带中,该环形带的内、外圆心与金属板C、D的中心O点重合,内圆半径Rl = .磁感应强度B0 =
.已知粒子在偏转电场中运动的时间远小于电场变化的周期(电场变化的周期T未知),粒子重力不计.
(1)求粒子离开偏转电场时,在垂直于板面方向偏移的最大距离;
(2)若所有粒子均不能从环形磁场的右侧穿出,求环形带磁场的最小宽度;
5、简答题 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。在电子枪中产生的
电子经过加速电场加速后射出,从P点进入并通过圆形区域后,打到荧光屏上,如图所示。如果圆形区域中不加磁场,电子一直打到荧光屏上的中心O点的动能为E;在圆形区域内加垂直于圆面、磁感应强度为B的匀强磁场后,电子将打到荧光屏的上端N点。已知ON=h,PO=L。电子的电荷量为e,质量为m。求:
(1)电子打到荧光屏上的N点时的动能是多少?说明理由。
(2)电子在电子枪中加速的加速电压是多少?
(3)电子在磁场中做圆周运动的半径R是多少?
(4)试推导圆形区域的半径r与R及h、L的关系式。
?
?