高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理答题技巧《弹力》考点预测(2020年押题版)(六)
2020-08-15 23:53:49 【

1、填空题  某实验小组用图1所示装置探究“重锤动能变化与重力对它做功的关系”。实验中,让拖着纸带的重锤从高处由静止自由落下,打点计时器在纸带上打出一系列的点,通过对打下的点进行测量和研究,即可达到实验目的.

小题1: 图2是实验中打下的一条纸带,O点是重物开始下落时打下的起点,该小组在纸带上选取A、B、C、D、E、F、G七个计数点,每两个计数点间还有一个计时点(图中未画出),各计数点与起点O的距离如图所示,已知打点计时器工作频率为50Hz,分别计算B、C、D、E、F五个计数点与O点的速度平方差△v2(△v2= v2- v02)。其中D点应填的数据为:?(保留3位有效数字)

计数点
B
C
D
E
F
速度平方差△v2/(m·s-1)2
1.38
2.45
?
5.52
7.50
小题2:以Δv 2为纵轴,以各计数点到O点的距离h为横轴,在坐标系中做出Δv 2—h图像。若不考虑误差,认为动能的变化量等于重力做的功,利用做出的图线的斜率,可求得当地的重力加速度g′=?.(保留3位有效数字)
小题3:重锤下落过程中一定受到阻力的作用。若已知当地的重力加速度为g,用这一装置测量重锤下落过程中受到的阻力F的大小,还需测量的物理量是??, F大小的表达式为:F=?(用符号表示)


参考答案:
小题1:3.84
小题2:9.78m/s2
小题3:重锤质量m,F= ?m(g-g’)


本题解析:解:(1)计数点之间的时间间隔为T=0.04s,根据在匀变速直线运动中时间中点的瞬时速度等于该过程中的平均速度,可以求出D点速度大小为:vD=≈1.96m/s?所以△v2=-0=3.83m2/s2,由于所取位移和时间不同,因此在3.83~3.84范围范围内均可以.故答案为:3.83(3.83~3.84)
(2)根据公式学公式v2=2gh,可知图象的斜率表示2g,由图象求出其斜率为k=19.56,所以当地的重力加速度为g=9.78m/s2,在9.67~9.94m/s2范围内均正确.故答案为:9.78m/s2(9.67~9.94m/s2).
(3)根据牛顿第二定律有mg-f=mg′,可知,只要测量重锤的质量m,即可正确求出空气阻力大小.故答案为:重锤质量m.
根据牛顿第二定律有mg-F=mg′可以求出阻力的表达式为F=mg-mg′.故答案为:mg-mg′.
点评:解决实验的根本是明确实验原理,然后熟练应用所学基本运动学规律求解.


本题难度:一般



2、选择题  用轻弹簧竖直悬挂质量为m的物体,静止时弹簧伸长量为2L.现用该弹簧沿斜面方向拉住质量为2m的物体,系统静止时弹簧伸长量为L.斜面倾角为30度.则物体所受摩擦力(  )
A.等于0
B.大小为

1
2
mg方向沿斜面向上
C.大小为
3

2
mg,方向沿斜面向上
D.大小为mg,方向沿斜面向上


参考答案:弹簧竖直悬挂物体时,对物体受力分析,根据共点力平衡条件
?F=mg ①
根据胡克定律
?F=k?2L ②
由①②得,k=mg2L? ③
物体放在斜面上时,再次对物体受力分析,如图



设物体所受的摩擦力沿斜面向上,根据共点力平衡条件,有
F′+f-2mgsin30°=0 ③
其中
F′=kL ④
由以上四式解得
f=12mg,故物体所受的摩擦力大小方向沿斜面向上,大小为12mg.
故选B.


本题解析:


本题难度:简单



3、实验题  在用如图甲所示的装置“验证机械能守恒定律”的实验中,打点计时器接在频率为的交流电源上,从实验中打出的几条纸带中选出一条理想纸带,如图乙所示,选取纸带上打出的连续4个点,各点距起始点O的距离分别为,已知重锤的质量为,当地的重力加速度为,则:

①从打下起始点到打下点的过程中,重锤重力势能的减少量为?,重锤动能的增加量为?
②若,且测出,可求出当地的重力加速度??


参考答案:①??②


本题解析:①重锤拉动纸带下落,虽然纸带和打点计时器有摩擦,但重锤的质量很大,也就重力很大,摩擦力可以忽略不计,整个过程可以看成机械能守恒,那么重锤下落过程中减少的重力势能为EP减=mgs3,C点的瞬时速度为vc=(s3-s1)/2T,此过程中增加的动能为Ek增=mvc2/2=m(s3-s1)2/8T= m(s3-s1)2f/8。②由mgs3= m(s3-s1)2f/8,代入数据,得g=9.5m/s2。


本题难度:一般



4、实验题  (11分)如图所示为实验室中验证动量守恒的实验装置示意图。

(1)若入射小球质量为,半径为;被碰小球质量为,半径为,则(?)
A.,? B. ,
C.,? D. ,
(2)为完成此实验,以下所提供的测量工具中必需的是?.(填下列对应的字母)
A.直尺? B.游标卡尺? C.天平? D.弹簧秤? E.秒表
(3)实验中必需要求的条件是?
A.斜槽必须是光滑的
B.斜槽末端的切线必须水平
C.的球心在碰撞瞬间必须在同一高度
D.每次必须从同一高度处滚下
(4)实验中必须测量的物理量是?
A.小球的质量? B.小球起始高度? C.小球半径
D.小球起飞的时间? E.桌面离地面的高度? F.小球飞出的水平距离
(5)设入射小球的质量,被碰小球质量为,P为被碰前入射小球落点的平均位置,则关系式(用及图中字母表示)?成立,即表示碰撞中动量守恒.


参考答案:(1)C?(2)AC?(3)BCD?(4)AF?(5)


本题解析:
试题分析:(1)为了使两球发生正碰,两小球的半径要相同,即;在小球在斜槽末端碰撞过程中水平方向满足动量守恒定律有:,两球若发生弹性碰撞满足机械能守恒定律有:,解得:,要使碰后入射小球不反弹有速度,则,即,故选C。
(2)为碰前入射小球落点的平均位置,为碰后入射小球的位置,为碰后被碰小球的位置,碰撞前入射小球的速度,碰撞后入射小球的速度,碰撞后被碰小球的速度,若,则表明通过该实验验证了两球碰撞过程中动量守恒,带入数据得,所以需要测量质量和水平位移,用到的仪器是直尺、天平.
(3)即使斜槽粗糙,入射小球两次在相同的摩擦力作用下滑到斜槽末端的速度相同,不会影响碰撞实验,故对斜槽是否光滑没有要求,选项A错误。为保证小球碰前碰后速度水平,则斜槽末端切线必须水平,选项B正确。为了发生对心碰撞,的球心在碰撞瞬间必须在同一高度,选项C正确。入射小球每次从同一高度由静止释放,保证入射小球碰撞前的速度不变,选项D正确。故选BCD。
(4)小球平抛运动的时间相等,要验证动量守恒,只需验证,所以需要测量两小球的质量,以及小球飞出的水平距离,故选AF。
(5)根据落点可得验证动量守恒的表达式为


本题难度:一般



5、实验题  在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:
A.让小球多次从________位置上滚下,在一张印有小方格的纸上记下小球碰到铅笔笔尖的一系列位置,如图3中的a、b、c、d所示.
B.按图安装好器材,注意斜槽末端________,记下平抛初位置O点和过O点的竖直线.
C.取下白纸以O为原点,以竖直线为y轴建立平面直角坐标系,用平滑曲线画出小球做平抛运动的轨迹.

图3?图4
(1)完成上述步骤,将正确的答案填在横线上.
(2)上述实验步骤的合理顺序是________.
(3)已知图3中小方格的边长L=2.5 cm,则小球平抛的初速度为v0=________m/s,小球在b点的速率为________m/s.(取g=10m/s2)


参考答案:(1)A.同一(1分) B.切线水平 (1分)
(2)BAC (3分)
(3)1.0 (3分)? 1.25(3分)


本题解析:由表格可以看出,a、b、c、d四点水平方向之间的距离都是2个方格边长,所以它们相邻两点之间的时间间隔相等,根据Δybc-Δyab=gt2得t= ?s=0.05 s.
平抛运动的初速度等于水平方向匀速运动的速度,即
v0=m/s=1.0m/s,
b点的竖直分速度vby=m/s=0.75m/s,
故b点的速率vb==1.25m/s.
点评:本题难度较小,注意分析竖直方向位移差值相同,说明运动时间相同


本题难度:简单



】【打印繁体】 【关闭】 【返回顶部
下一篇高中物理知识点大全《加速度》高..

问题咨询请搜索关注"91考试网"微信公众号后留言咨询