1、单选题 某一地区在拆迁时将一些枯死的树木刨出。拆迁办组织三个部门的人员准备将树木锯成短木,树木的粗细都相同,只是长度不一样。甲部门的人锯的树木是2米长,乙部门的人锯的树木是1.5米长。丙部门的人锯的树木是1米长,都要求按0.5米长的规格锯开。时间结束时,三个部门正好把堆放的树木锯完,张三那个部门共锯了27段,李四那个部门共锯了28段,王五那个部门共锯了34段。请问,张三属于哪个部门的?_____
A: 属于丙部门,甲部门最慢
B: 属于乙部门,丙部门最慢
C: 属于甲部门,丙部门最慢
D: 属于乙部门,乙部门最慢
参考答案: B
本题解释:参考答案:B
题目详解:张三部门27段=13.5米李四部门28段=14米王五部门34段=17米由于树木都是整根的张三部门一共锯了13.5米所以他们的树木只能是1.5米长的,所以张三是乙部门的。2相对应的王五部门17米长不可能是2米长的只能是1米长的木头,王五是丙部门的。3剩下的李四部门的木头都是2米长的,李四是甲部门的。13.5米=9根木头每根木头锯2次一共是锯了18次;14米=7跟木头每根木头锯3次一共锯了21次;17米=17根木头每根木头锯一次一共锯了17次。所以丙部门最慢。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除特征
2、单选题 在一次展览会上,展品上有366部手机不是A公司的,有276部手机不是B公司的,但两公司的展品共有378部。问B公司有多少部手机参展?_____
A: 134
B: 144
C: 234
D: 244
参考答案: C
本题解释:C。其它公司的有(366+276-378)/2=132部,所以B公司有366-132=234,选C。
3、单选题 西南赛区四支球队为了争夺小组第一名而进行小组循环赛,已知小马队已比赛了3场,小熊队已比赛了2场,小龙队已比赛了1场,问小牛队比赛了几场_____
A: 3
B: 2
C: 1
参考答案: B
本题解释:参考答案:B
题目详解:小马队已比赛了3场:说明小马队和小熊队、小龙队、小牛队各打了1场;小龙队已比赛了1场:说明小龙队只和小马队比赛了1场;小熊队已比赛了2场:因为和小马队比赛了1场,所以还有1场比赛。因为小龙队只和小马队比赛过,所以小熊队只能和小牛队进行比赛。因此小牛队比赛了2场,分别是和小马队、小熊队进行的比赛。所以,选B。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛
4、单选题 (2005国家二类,第45题)外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种都能教的有2人,则只能教法语的有多少人?_____
A: 4人
B: 5人
C: 6人
D: 7人
参考答案: B
本题解释:参考答案:B
题目详解:“由中间向外围”进行数据标记,进行简单加减运算,如下图过程所示:
5、单选题 甲乙两人从相距1350米的地方,以相同的速度相对行走,两人在出发点分别放下1个标志物。再前进10米后放下3个标志物。前进10米放下5个标志物,再前进10米放下7个标志物,以此类推。当两个相遇时,一共放下了几个标志物?_____
A: 4489
B: 4624
C: 8978
D: 9248
参考答案: D
本题解释:正确答案是D考点数列问题解析以10米为间隔,可知1350米的路程被分成135个间隔,因此共有136个放标志物的点,按甲乙平分为两组,每组为68个点,故甲或乙最后均放置135个标志物。由求和公式可知总数为(1+135)÷2×68×2=9248。因此正确答案为D。注:等差数列求和公式,和=(首项+末项)×项数÷2秒杀技易知全程被分为135个间隔,从而得出每组放置标志物的点为偶数,注意到每次放下标志物都为奇数,从而可知每组的标志物总数必然为偶数。又考虑到甲乙两组是相同的,而选项中C、D分别为A、B的两倍,而A、B中B为偶数,故可猜测B为一人放下的标志物数,而D为答案。标签猜题技巧