1、单选题 某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?_____
A: 8
B: 10
C: 12
D: 15
参考答案: D
本题解释:正确答案是D考点和差倍比问题解析乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。秒杀技由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
2、单选题 甲、乙、丙、丁四人共同做一批纸盒,甲做的纸盒数是另外三人做的总和的一半,乙做的纸盒数是另外三人做的总和的1/3,丙做的纸盒数是另外三人做的总和的1/4,丁一共做了169个,则甲一共做了_____纸盒。
A: 780个
B: 450个
C: 390个
D: 260个
参考答案: D
本题解释:正确答案是D考点和差倍比问题解析分析题意可知,甲、乙、丙分别做了总纸盒数的1/3、1/4、1/5,那么总的纸盒数为169÷(1-1/3-1/4-1/5)=780个,甲一共做了780×1/3=260个。故正确答案为D。
3、单选题 某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的_____倍。
A: 6
B: 8
C: 10
D: 12
参考答案: D
本题解释:D。列方程组。设学徒工、熟练工、技师分别有X,Y,Z名。则有:X+Y+Z=802X+6Y+7Z=4802X=6Y得到:X=15,Y=5,Z=60,所以Z∶Y=60∶5=12。选D。
4、单选题 (2007浙江,第24题)林子里有猴子喜欢吃的野果,23只猴子可以在9周内吃光,21只猴子可以在12周内吃光,问如果有33只猴子-起吃,则需要几周吃光?(假定野果生长的速度不变)_____
A: 2周
B: 3周
C: 4周
D: 5周
参考答案: C
本题解释:参考答案:C
题目详解:依题意:设野果的原有存量为
5、单选题 甲、乙、丙三人沿着200米的环形跑道跑步,甲跑完一圈要1分30秒,乙跑完一圈要1分20秒,丙跑完一圈要1分12秒,三人同时、同向、同地起跑,最少经过多少时间又在同一起跑线上相遇?_____
A: 10分
B: 6分
C: 24分
D: 12分
参考答案: D
本题解释:参考答案
题目详解:三人跑完一圈的时间比为: