1、单选题 某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?_____
A: 120
B: 144
C: 177
D: 192
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析假设只参加一种考试的有X人,则可知:X+46×2+24×3=63+89+47,可知X=35,因此接受调查的学生共有35+46+24+15=120人。故正确答案为A。注:将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
2、单选题 某公司100名员工对甲、乙两名经理进行满意度评议,对甲满意的人数占全体参加评议的3/5,对乙满意的人数比甲的人数多6人,对甲乙都不满意的占满意人数的1/3多2人,则对甲乙都满意的人数是_____。
A: 36
B: 26
C: 48
D: 42
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析对甲满意的人数为60人,对乙满意的人数为66人,设对甲、乙都满意的人数为X,则对甲、乙都不满意的人数为1/3X+2,由两集合容斥原理的推论公式可知,100-(1/3X+2)=60+66-X,解得X=42,故正确答案为D。两集合容斥原理推论公式:满足条件1的个数+满足条件2的个数-都满足的个数=总数-都不满足的个数。
3、单选题 某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?_____
A: 24
B: 25
C: 26
D: 27
参考答案: B
本题解释:正确答案是B考点多位数问题解析要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。标签构造调整
4、单选题 同时扔出A、B两颗骰子(其六个面上的数字都为1,2,3,4,5,6),问两个骰子出现的数字的积为偶数的情形有几种_____。
A: 24千米
B: 25千米
C: 28千米
D: 30千米
参考答案: A
本题解释:正确答案是B考点行程问题解析甲从A地到B地需要100÷10=10小时,为了使乙不比甲晚到B地,乙至多用时10-6=4小时,则乙的速度至少为100÷4=25千米/小时。故正确答案为B。
5、单选题 甲某打电话时忘记了对方电话号码最后一位数字,但记得这个数字不是"0"。甲某尝试用其他数字代替最后一位数字,恰好第二次尝试成功的概率是_____。
A: 1/9
B: 1/8
C: 1/7
D: 2/9
参考答案: A
本题解释:正确答案是A考点概率问题解析最后一个数字不是0,共有9种选择。要求恰好第二次尝试成功,则第一次尝试失败,概率为8/9,第二次更换数字成功,概率为1/8,因此恰好第二次尝试成功的概率为8/9×1/8=1/9。故正确答案为A。秒杀技根据不放回摸球模型,恰好第二次尝试成功的概率与恰好第一次成功的概率相同,因此该概率值为1/9。故正确答案为A。