1、单选题 一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?_____
A: 4
B: 5
C: 6
D: 7
参考答案: B
本题解释:正确答案是B考点趣味数学问题解析题目给出对面数字之和为13,则注意将其余条件中出现的对面合在一起。从这一点出发,可以看出若将小张与小王看到的面合在一起,则实际共看到2个顶面与4个不同的侧面。而四个不同侧面恰为两组对面,也即其数字之和为:13×2=26,因此顶面的数字为:(18+24-26)÷2=8,于是底面数字为:13-8=5,故正确答案为B。
2、单选题 甲、乙两个容器均有50厘米深,底面积之比为5:4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是_____。
A: 20厘米
B: 25厘米
C: 30厘米
D: 35厘米
参考答案: B
本题解释:正确答案是B考点几何问题解析设注入水后的水深为y厘米,则根据注入水同样多,可知(y-9)×5=(y-5)×4,解得y=25,故正确答案为B。
3、单选题 林子里的猴子喜欢吃的野果,23只猴子可以在9周内吃光,21只猴子可以在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光(假定野果生长的速度不变)?_____
A: 2周
B: 3周
C: 4周
D: 5周
参考答案: C
本题解释:正确答案是C考点牛吃草问题解析设原有野果为N,每周生长的野果可供Y个猴子吃,根据题意可得:N=(23-Y)×9,N=(21-Y)×12,解得N=72,Y=15。因此若33只猴子一起吃,需要时间为72÷(33-15)=4周。故正确答案为C。公式:在牛吃草模型背景下,公式为N=(牛数-Y)×天数,其中N表示原有草量的存量,以牛数与天数的乘积来衡量;Y表示专门吃新增加草量所需要的牛数。标签公式应用
4、单选题 从甲、乙两车站同时相对开出第一辆公共汽车,此后两站每隔8分钟再开出一辆,以此类推。已知每辆车的车速相同且都是匀速的,每辆车到达对方站都需要45分钟。现有一乘客坐甲站开出的第一辆车去乙站,问他在路上会遇到几辆从乙站开出的公共汽车。_____。
A: 4辆
B: 5辆
C: 6辆
D: 7辆
参考答案: C
本题解释:正确答案是C考点计数模型问题解析乘客从甲站出发,45分钟内共有6个时间段乙站会发车,出发时间分别为0、8、16、24、32、40分钟,故乘客在路会遇到6辆车,正确答案为C。
5、单选题 一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子,那么从一对刚出生的兔子开始,一年后可变成_____对兔子。
A: 55
B: 89
C: 144
D: 233
参考答案: D
本题解释:正确答案是D考点数列问题解析