1、单选题 全班有40个同学来分819本书,每个人至少分到一本,请问,至少有几个同学分得同样多的书?_____
A: 2
B: 3
C: 4
D: 5
参考答案: A
本题解释:参考答案:A
题目详解:解法一:考虑最差情况。40个同学,如果每个人分到的书的数量都不一样多,假设第一个同学分1本,第二个同学分2本,.....那么至少应该有1+2+…+40=820本书,但现在只有819本书,也就是少了一本书,即有人少拿了一本书,因此至少有2个同学分得同样多的书。所以,选A。解法二:等差为1,首项为1,共有40项的数列的和:
2、单选题 32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同一个鸽舍?_____
A: 3
B: 4
C: 5
D: 6
参考答案: C
本题解释:参考答案:C
题目详解:把7个鸽舍看成7个“抽屉”,32只鸽子看成32个“苹果”,由于32÷7=4…4,根据抽屉原理2可以得到,至少有
3、单选题 半步桥小学六年级(一)班有42人开展读书活动。他们从学校图书馆借了212本图书,那么其中借书最多的人至少可以借到多少本书?_____
A: 4
B: 5
C: 6
D: 7
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,将42名同学看成42个“抽屉”,因为212÷42=5…2;由抽屉原理2可以得到:借书最多的人至少可以借到5+1=6本书。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理2
4、单选题 有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?_____
A: 12
B: 15
C: 14
D: 13
参考答案: C
本题解释:参考答案:C
题目详解:将这20个数字分别列为如下:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13。考虑最差情况,就是前面抽出13个数字就是1-13,然后取第14个数字的时候不管取什么,肯定是14-20中的一个,与前面的数字相减必然能等于13。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
5、单选题 现在有64个乒乓球,18个乒乓球盒,每个盒子里最多可以放6个乒乓球,最少要放1个乒乓球,至少有几个乒乓球盒子里的乒乓球数目相同?_____
A: 4
B: 5
C: 8
D: 10
参考答案: A
本题解释:参考答案:A
题目详解:假设第一只盒子装1个乒乓球,第二只盒子装2个乒乓球,第三只盒子装3个乒乓球,第四只盒子装4个乒乓球,第五只盒子装5个乒乓球,第六只盒子装6个乒乓球。由于最多只能装6个乒乓球,所以第七到第十二也只能是这种情况,第十三到第十八也相同。第一到第六个盒子共装了21个乒乓球,第一到第十八个盒子装了21×3=63个乒乓球,此时有三个盒子装的乒乓球数量一样多。所以如果将第64个乒乓球算上,则有四个盒子装的乒乓球数量一样多。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1