1、单选题 某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?_____
A: 14
B: 21
C: 23
D: 32
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析解析1:本题注意按照不合格得到三个类,进行容斥原理分析,分别设三项全部合格、仅一项不合格的产品有x、y种,根据题意可得:y+5+2=36-x,3×2+2×5+1×y=7+9+6,联立解得x=23,y=6,因此三项全部合格的食品有23种,故正确答案为C。解析2:不合格的食品数共有:7+9+6-5-2×2=13,则合格的数量为:36-13=23种,故正确答案为C。备注:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z。标签三集合容斥原理公式整体考虑公式应用
2、单选题 某商场开展购物优惠活动:一次购买300元及以下的商品九折优惠;一次购买300元以上的商品,其中300元九折优惠,超过的部分八折优惠。小王购物第一次付款144元,第二次又付款310元。如果他一次购买并付款,可以节省多少元?_____
A: 16
B: 22.4
C: 30.6
D: 48
参考答案: A
本题解释:正确答案是A考点统筹规划问题解析第一次付款144元,可得这部分商品原价为160元;第二次付款超过300元,可知这部分商品原价肯定超过300元,所以这部分不论合并还是不合并,都是付款310元。只有第一次付款的部分由九折变为八折,所以节省160×(0.9-0.8)=16元。故正确答案为A。
3、单选题 某企业的固定资产,甲车间是乙车间的1/2,乙车间是丙车间的1/4,那么,丙车间是甲车间的_____。
A: 8倍
B: 1/8
C: 1/2
D: 2倍
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析解析1:应用赋值思想,假设甲车间为1,则乙车间为2,丙车间为8,即丙是甲的8倍。解析2:甲车间是乙车间的1/2,乙车间是丙车间的1/4,因此甲车间是丙车间的1/2×1/4=1/8,即丙车间是甲车间的8倍,故正确答案为A。标签赋值思想
4、单选题 一张考试卷共有10道题,后面的每一道题的分值都比其前面一道题多2分。如果这张考卷的满分为100分,那么第八道题的分值应为多少?_____。
A: 9
B: 15
C: 14
D: 16
参考答案: B
本题解释:正确答案是B考点数列问题解析由题意可知10道题的分值构成等差数列,公差为2。设第一题分值为n,则第十题的分值为n+2×9=n+18,故总分为(n+n+18)÷2×10=100,解得n=1,则第八题分值为1+2×7=15分,故正确答案为B。
5、单选题 射箭运动员进行训练,10支箭共打了93环,且每支箭的环数都不低8环。问命中10环的箭数最多能比命中9环的多几支?_____
A: 2
B: 3
C: 4
D: 5
参考答案: D
本题解释:正确答案是D,解析解析1:由题可知,”每支箭的环数都不低于8环”,所以环数只能取8、9、10环。假设10支箭都打了8环,则最低要打80环,而实际打的93环则是由于有9环和10环的贡献。与80环相比,每一个9环相当于多1环,每一个10环相当于多2环,所以设10环的有a支,9环的b支,则得到方程2a+b=93-80。这时,利用代入法,从”最多”的选项开始代入,a-b=5,解得a=6,b=1,即10环的是6支,9环是1支,8环是3支,可以成立。故正确答案为D。解析2:从另一个极端出发,如果每支箭的环数都打中10环,应该是100环,而实际为93环,少了7环。现在要求中10环的箭数”最多”能比命中9环的多几支,即要求10环尽量多,同时9环尽量少。所以少的7环尽可能由8环的箭产生,但是由于每支8环只能差2的整数倍,所以最多差6环,还需要有一支9环的。所以10环6支,9环1支,8环3支可以让差距最大。故正确答案为D。速解如果列方程,属于不定方程,未知数的个数多于方程个数,需要靠代入法解决。而题目真正的考点在于”最多”这个词的理解,即10环尽量多,9环尽量少,在这个前提下分析题目,才能得到最简的方式。考点计数模型问题笔记编辑笔记