1、单选题 某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?_____
A: 8
B: 10
C: 12
D: 15
参考答案: D
本题解释:正确答案是D考点和差倍比问题解析乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。秒杀技由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
2、单选题 绝对值为5的数减去10的值为_____
A: -5,-15
B: 5,-15
C: -5,15
D: 5,10
参考答案: A
本题解释:甲、乙两人共储蓄1000元,甲取出240元,乙又存入80元,这时甲的储蓄正好是乙的3倍,原来甲比乙多储蓄多少元?(B)A.620元B.740元C.700元D.660元[content]正确答案:B解析:假设甲储蓄的钱为X,则乙为1000-X,那么X-240=3(1000-X+80),X=870,则乙为1000-870=130。甲比乙多870-130=740元。故答案为B。
3、单选题 一根绳子对折三次后,从中剪断,共剪成几段绳子?_____
A: 9
B: 6
C: 5
D: 3
参考答案: A
本题解释:正确答案是A考点计数模型问题解析
4、单选题 1992是24个连续偶数的和,问这24个连续偶数中最大的一个是几?_____
A: 84
B: 106
C: 108
D: 130
参考答案: B
本题解释:正确答案是B考点数列问题解析解析1:设最大的偶数为x,根据等差数列的最小一项为x-(24-1)×2=x-46,由等差数列求和公式可得(x+x-46)/2×24=1992,解得x=106,因此这24个连续偶数中最大的一个是106,故正确答案为B。解析2:根据等差数列的性质,24项和的平均数即为数列的中位数,因此数列中位数为:1992÷24=83,可以知道此数列第12项为82,第13项为84,根据等差数列定义式即可求出最大的第24项为:82+(24-12)×2=106,故正确答案为B。
5、单选题 龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米。乌龟不停地跑,但兔子却边跑边玩,它先跑一分钟,然后玩十五分钟,又跑二分钟,然后玩十五分钟,又跑三分钟,然后玩十五分钟,……,那么先到达终点的比后到达终点的快多少分钟?_____
A: 104分钟
B: 90.6分钟
C: 15.6分钟
D: 13.4分钟
参考答案: D
本题解释:正确答案是D考点趣味数学问题解析乌龟到达终点所需时间为:5.2÷3×60=104分钟,兔子如果不休息,则需要时间:5.2÷20×60=15.6分钟。而实际兔子休息的规律为每跑1、2、3、······分钟后,休息15分钟,因为15.6=1+2+3+4+5+0.6,所以兔子总共休息的时间为:15×5=75分钟,即兔子跑到终点所需时间为:15.6+75=90.6分钟,因此兔子到达终点比乌龟快:104-90.6=13.4分钟,故正确答案为D。