1、单选题 一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。原木箱内共有乒乓球多少个?_____
A: 246个
B: 258个
C: 264个
D: 272个
参考答案: C
本题解释:正确答案是C解析乒乓球个数=(3+5)×N+8=8×(N+1),即被8整除;乒乓球个数=(7+3)×M+24=10×(M+2)+4,即被10除余4;观察选项,只有C符合要求,故正确答案为C。
2、单选题 下图中的甲和乙都是正方形,BE=6厘米,EF=4厘米。那么,阴影部分ABC的面积是多少平方厘米?_____
A: 20
B: 24
C: 21
D: 18
参考答案: D
本题解释:正确答案是D考点几何问题解析
3、单选题 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?_____
A: 37
B: 36
C: 35
D: 34
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析本题注意按照不合格得到三个类,进行容斥原理分析。分别设三项全部合格、仅一项不合格的产品有A、B种,根据题意可得B+7+1=52-A,3×1+2×7+1×B=8+10+9,解得A=34,B=10。故正确答案为D。公式:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看做三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。标签整体考虑公式应用
4、单选题 打印一份稿件,小张5小时可以打完这份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时可以完成?_____
A: 6
B: 20/3
C: 7
D: 22/3
参考答案: B
本题解释:正确答案是B考点工程问题解析设总的稿件为60张,由题意,小张每小时打印1/15,小李每小时打印1/12,则小张、小李每小时分别能打印4张、5张。如果两个人合打,每小时打印9张,则打印完这份稿件需要60÷9=20/3(小时),故正确答案为B。标签赋值思想
5、单选题 某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?_____
A: 21
B: 24
C: 17.25
D: 21.33
参考答案: A
本题解释:正确答案是A考点分段计算问题解析在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大,即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨。故正确答案为A。