1、单选题 市民广场中有两块草坪,其中一块草坪是正方形,面积为400平方米,另一块草坪是圆形,其直径比正方形边长长10%,圆形草坪的面积是多少平方米?_____
A: 410
B: 400
C: 390
D: 380
参考答案: D
本题解释: 【解析】正方形的边长是20米,那么圆的半径是
2、单选题 甲、乙两人进行乒乓球比赛,比赛采取三局两胜制,无论哪一方先胜两局则比赛结束。甲每局获胜的概率为2/3,乙每局获胜的概率为1/3。问甲最后取胜的概率是多少?_____
A: A
B: B
C: C
D: D
参考答案: A
3、单选题 在一个老年活动中心,会下象棋的有59人,会下围棋的有48人,两种棋都不会下的有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?_____
A: 89人
B: 107人
C: 129人
D: 137人
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析根据两集合容斥原理,设该俱乐部总人数为a,则59+48-30=a-12,解得a=89(人),故正确答案为A。注:两集合容斥原理推论公式:满足条件1的个数+满足条件2的个数-都满足的个数=总数-都不满足的个数。
4、单选题 有一根长240米的绳子,从某一端开始每隔4米作一个记号,每隔6米也作一个记号。然后将标有记号的地方剪断,则绳子共剪成_____段。
A: 40
B: 60
C: 80
D: 81
参考答案: C
本题解释:【答案】C。解析:容斥原理,每隔4米作一个记号,则作记号数为240÷4-1=59;每隔6米作一个记号,则作记号数为240÷6-1=39;其中每隔12米的记号重复被作两次,类似的记号数为240÷12-1=19。因此做记号总数为59+39-19=79,即绳子被剪成80段。故正确答案为C。两集合容斥原理公式:|A∪B|=|A|+|B|-|A∩B|
5、单选题 甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?_____
A: 3
B: 4
C: 5
D: 6
参考答案: B
本题解释:【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。