1、单选题 (2009四川,第8题)甲乙两人在一条椭圆形田径跑道上练习快跑和慢跑,甲的速度为3m/s,乙的速度是7m/s。甲、乙在同一点同向跑步,经100s第一次相遇,若甲、乙朝相反方向跑,经_____s第一次相遇。
A: 30
B: 40
C: 80
D: 70
参考答案: B
本题解释:参考答案:B
题目详解:解法一:假设跑道长为
2、单选题
A: 20
B: 24
C: 23
D: 23.2
参考答案: D
本题解释:参考答案
题目详解:两人的速度和是:
3、单选题 如图:甲,乙二人分别从A,B两地同时相向出发,往返于A、B之间,第一次相遇在距A地30公里处,第二次相遇地点在距第一次相遇地右边10公里处:问A、B两点相距多远?_____
A: 90
B: 75
C: 65
D: 50
参考答案: C
本题解释:参考答案:C
题目详解:解法一:两人第一次相遇,共同走完了一个全程,第二次相遇共同走完了3个全程。第一次相遇甲走了30千米,那么第2次相遇时,甲共走了3×30=90千米,实际上甲还差30+10=40千米才走完两个全程。AB两地的距离是:(90+40)÷2=65公里。解法二:“单岸型”,两次相遇问题:
4、单选题 某团体从甲地到乙地,甲、乙两地相距100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,全部人员同时到达。已知步行速度为8千米/小时,汽车速度为40千米/小时。问使团体全部成员同时到达乙地需要多少时间?_____
A: 5.5小时
B: 5小时
C: 4.5小时
D: 4小时
参考答案: B
本题解释:参考答案:B
题目详解:根据题意,二队同时出发又同时到达,则二队步行的距离相等,乘车的距离也相等。设第一队乘车的距离是X,则步行的距离是100-X,那么第二队步行的距离也是100-X,汽车从第一队人下车到回来与第二队相遇所行驶的距离(即空车行使的距离)是:100-2×(100-X)=2X-100根据汽车从出发到与第二队相遇所用时间与第二队步行的时间相同,可列方程:[X+(2x-100)]÷40=(100-x)÷8解得,x=75。所用总时间为(以第一队为例):乘车时间+步行时间=(75÷40)+(100-75)÷8=5小时所以,选B。考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线一次相遇问题
5、单选题 A、B两地相距540千米。甲、乙两车往返行驶于A、B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?()
A: 120
B: 1440
C: 2160
D: 2880
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,可知:第一次相遇,甲、乙总共走了2个全程,第二次相遇,甲、乙总共走了4个全程,乙比甲快,相遇又在P点。所以可以推出:从第一次相遇到第二次相遇,甲从第一个P点到第二个P点,路程正好是第一次的路程,则P到A点的路程为P到B点路程的2倍。假设一个全程为3份,第一次相遇甲走了2份,乙走了4份;第二次相遇,乙正好走了1份到B地,又返回走了1份;2个全程里乙走了:(540÷3)×4=180×4=720千米,乙总共走了:720×3=2160千米。所以,选C考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线多次相遇问题