1、单选题 一直角三角形的两直角边的长度之和为14,假如这个三角形的周长与面积数值相等,那么该三角形的面积为_____。
A: 20
B: 22.5
C: 24
D: 24.5
参考答案: C
本题解释:正确答案是C考点几何问题解析
2、单选题 股票买入和卖出都需要通过证券公司进行交易,每次交易费占交易额的2‰。某人以10元的价格买入1000股股票,几天后又以12元的价格全都卖出,若每次交易还需付占交易额3‰的印花税,则此人将获利_____。
A: 1880元
B: 1890元
C: 1900元
D: 1944元
参考答案: B
本题解释:正确答案是B考点经济利润问题解析交易两次,所以交两次交易费,交两次印花税,故可得如下:(12-10)×1000-(12+10)×1000×(2‰+3‰)=2000-22000×5‰=2000-110=1890,故正确答案为B。
3、单选题 某市场运来苹果、香蕉、柚子和梨四种水果。其中苹果和柚子共30吨,香蕉、柚子和梨共50吨,柚子占水果总数的1/4。问一共运来水果多少吨?_____
A: 36吨
B: 64吨
C: 80吨
D: 170吨
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析
4、单选题 某单位为业务技能大赛获奖职工发放奖金,一、二、三等奖每人奖金分别为800、700和500元。11名获一、二、三等奖的职工共获奖金6700元,问有多少人获得三等奖?_____
A: 3
B: 4
C: 5
D: 6
参考答案: D
本题解释:正确答案是D,全站数据:本题共被作答1次,正确率为100.00%解析假设一、二、三等奖的人数分别是x、y、z,则列方程组800x+700y+500z=6700简化为8x+7y+5z=67••••••①x+y+z=11••••••②此时,题目转化为求解不定方程,无法直接得到结果,但是可以采用消元结合排除法来解决。思路一:倍数关系。消去未知数z,(①-5×②),得到3x+2y=12,所以y只能取3的倍数。所以y=3,则推出x=2,z=6。故正确答案为D。思路二:排除法。消去无关未知数y,(7×②-①),得到2z-x=10,此时根据选项代入,z只能取大于5的数,否则x将为负值,所以只能选D选项。秒杀法:按照平均值的思想,如果11个人的平均奖金为600元(只考虑500元和700元的平均值),那么总奖金应该为6600元,但是由于题目中还包含800元的获奖者,所以只有当获得500元的人超过半数,才能够使总金额达到6700元甚至更低,只能选D。速解本题主要考察的是对于不定方程的处理方式,通过寻找倍数关系或者结合选项利用排除法来解决。但是由于题目类似于十字交叉法和平均值问题的设题方式,也可以通过加权的方式定性思维,结合选项秒杀。考点不定方程问题笔记编辑笔记
5、单选题 甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?_____
A: 2
B: 3
C: 4
D: 5
参考答案: B
本题解释:正确答案是B考点行程问题解析解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。公式:两运动体从两端同时出发,相向而行,不断往返:第N次迎面相遇,两运动体路程和=全程×(2N-1);第N次追上相遇,两运动体路程差=全程×(2N-1)。标签公式应用