1、单选题 学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中至少有多少名学生是同年同月出生的?_____
B: 1
C: 2
D: 3
参考答案: C
本题解释:参考答案:C
题目详解:解法一:把同年同月的放在一组里面,那么每一组可以作为1个“抽屉”;因此,可以构成3×12=36个“抽屉”,40÷36=1…4;由抽屉原理1可以得到,至少有2名学生是同年同月出生的。解法二:这40名同学的年龄最多相差36个月(三年),因40=1×36+4,故必有2人是同年、同月出生的。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
2、单选题 有黑色、白色、黄色的筷子各8双,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求?_____
A: 4
B: 5
C: 11
D: 19
参考答案: D
本题解释:参考答案
题目详解:解法一:考虑最差的情形。先选出一种颜色所有的筷子,然后再取出剩下的两种颜色的筷子各1根,最后再随便取1根即可。因此,至少要取8×2+1×2+1=19根,才能保证达到要求。解法二:1.最不好的取法是一种取了8双,另2种各取了1根,还不能保证有颜色不同的筷子两双;2.如果再取1根,在剩下的2种中,不管从哪一种取1根,都会和已经取出的凑成颜色相同的一双筷子,所以至少要取
3、单选题 半步桥小学六年级(一)班有42人开展读书活动。他们从学校图书馆借了212本图书,那么其中借书最多的人至少可以借到多少本书?_____
A: 4
B: 5
C: 6
D: 7
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,将42名同学看成42个“抽屉”,因为212÷42=5…2;由抽屉原理2可以得到:借书最多的人至少可以借到5+1=6本书。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理2
4、单选题 有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?_____
A: 12
B: 15
C: 14
D: 13
参考答案: C
本题解释:参考答案:C
题目详解:将这20个数字分别列为如下:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13。考虑最差情况,就是前面抽出13个数字就是1-13,然后取第14个数字的时候不管取什么,肯定是14-20中的一个,与前面的数字相减必然能等于13。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
5、单选题 口袋里有三种颜色的筷子各10根,请问,至少要取多少根筷子才能保证一定取到2种不同颜色的筷子各2双?_____
A: 4
B: 10
C: 11
D: 17
参考答案: D
本题解释:参考答案
题目详解:本题应该考虑最差的情形。先取到其中一种颜色的筷子10根,可以取得其中一种颜色的筷子2双;然后再取剩余的两种颜色的筷子各3根,最后剩下的任取1根,都能取得剩下的颜色的筷子2双;因此只要取10+3×2+1=17根,就能保证一定取到2种不同颜色的筷子各2双。所以,选D。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1