1、单选题 有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?_____
A: 12
B: 15
C: 14
D: 13
参考答案: C
本题解释:参考答案:C
题目详解:将这20个数字分别列为如下:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13。考虑最差情况,就是前面抽出13个数字就是1-13,然后取第14个数字的时候不管取什么,肯定是14-20中的一个,与前面的数字相减必然能等于13。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
2、单选题 学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中至少有多少名学生是同年同月出生的?_____
B: 1
C: 2
D: 3
参考答案: C
本题解释:参考答案:C
题目详解:解法一:把同年同月的放在一组里面,那么每一组可以作为1个“抽屉”;因此,可以构成3×12=36个“抽屉”,40÷36=1…4;由抽屉原理1可以得到,至少有2名学生是同年同月出生的。解法二:这40名同学的年龄最多相差36个月(三年),因40=1×36+4,故必有2人是同年、同月出生的。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
3、单选题 现在有64个乒乓球,18个乒乓球盒,每个盒子里最多可以放6个乒乓球,最少要放1个乒乓球,至少有几个乒乓球盒子里的乒乓球数目相同?_____
A: 4
B: 5
C: 8
D: 10
参考答案: A
本题解释:参考答案:A
题目详解:假设第一只盒子装1个乒乓球,第二只盒子装2个乒乓球,第三只盒子装3个乒乓球,第四只盒子装4个乒乓球,第五只盒子装5个乒乓球,第六只盒子装6个乒乓球。由于最多只能装6个乒乓球,所以第七到第十二也只能是这种情况,第十三到第十八也相同。第一到第六个盒子共装了21个乒乓球,第一到第十八个盒子装了21×3=63个乒乓球,此时有三个盒子装的乒乓球数量一样多。所以如果将第64个乒乓球算上,则有四个盒子装的乒乓球数量一样多。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
4、单选题 32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同一个鸽舍?_____
A: 3
B: 4
C: 5
D: 6
参考答案: C
本题解释:参考答案:C
题目详解:把7个鸽舍看成7个“抽屉”,32只鸽子看成32个“苹果”,由于32÷7=4…4,根据抽屉原理2可以得到,至少有
5、单选题 (2009河北选调,第49题)一个盒子里有8个红球、6个蓝球、4个绿球、2个白球,如果闭上眼睛,从盒子中摸球,每次只许摸一个球,至少要摸出几个球,才能保证摸出的这几个球中至少有两个颜色相同?_____
A: 4
B: 5
C: 6
D: 8
参考答案: B
本题解释:参考答案:B
题目详解:题目要求“保证摸出的球至少有两个颜色相同”,最不利的情况就是“总是摸出颜色不相同的球”,总共只有4种颜色,可以摸出4个颜色不相同的球,因此摸5个就能保证摸出的球有两个颜色相同。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1