微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、173×173×173-162×162×162=_____
A: 926183B: 936185C: 926187D: 926189
参考答案: D 本题解释:正确答案是D考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。
2、
_____
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点几何问题解析
故正确答案为D。
3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?_____
A: 19B: 20C: 18D: 17
参考答案: B 本题解释:【解析】由已知得每个数字开头的数各有24÷4=6个,从小到大排列,7开头的从第6×3+1=19个开始,易知第19个是7245,第20个是7254。
4、小明7点多开始写作业,发现时针和分针正好相差了4大格,不到一个小时后写完作业,小明惊讶的发现时针和分针正好还是相差了4大格。问小明写作业花了多少分钟?_____
A: 30B: 40C:
D:
参考答案: C 本题解释:参考答案:C题目详解:分针和时针第一次相差4大格时,分针在时针的逆时针方向
;写完作业时,分针在时针的顺时针方向
,即这段时间分针比时针多走了
所花的时间为
分钟。考查点:数量关系>数学运算>特殊情境问题>钟表问题>时针与分针的角度关系
5、在一只底面半径是20cm的圆柱形小桶里,有一半径为l0cm的圆柱形钢材浸没在水中,当钢材从桶中取出后,桶里的水下降了3cm。求这段钢材的长度。_____
A: 3cmB: 6cmC: 12cmD: 18cm
参考答案: C 本题解释:【答案】C。解析:钢材的体积与水下降的体积相等,钢材长度与水下降的高度之比等于二者底面积之比的倒数,由此可得钢材长度为3×4=12。
6、_____
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点计算问题解析
7、一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?_____
A: 1894年B: 1892年C: 1898年D: 1896年
参考答案: B 本题解释:正确答案是B考点年龄问题解析由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。
8、某单位有78个人,站成一排,从左向右数,小王是第50个,从右向左数,小张是第48个,则小王小张之间有多少人?_____
A: 16B: 17C: 18D: 20
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析解析1:因为从左向右数,小王是第50个,所以小王左边有49人,从右向左数,小张是第48个,所以小张左边有78-48=30人,所以两人之间有49-30-1=18人。故正确答案为C。解析2:
9、甲、乙、丙三辆车从同一点出发,沿同一公路追赶一个人,这三辆车分别用6小时、10小时、12小时追上这个行人。已知甲车每小时行24千米、乙车每小时行20千米,则丙每小时行多少千米?_____
A: 16B: 17C: 18D: 19
参考答案: D 本题解释:参考答案
题目详解:依题意:设三辆车出发点与人的距离为x千米;人的速度为y千米/时;丙速度为n千米/时;代入公式:
,解得n=19;所以,选D。考查点:数量关系>数学运算>特殊情境问题>牛儿吃草问题>标准型牛儿吃草问题
10、有甲、乙两只钟表,甲表8时15分时,乙表8时31分。甲表比标准时间每9小时快3分,乙表比标准时间每7小时慢5分。至少要经过几小时,两钟表的指针指在同一时刻?_____
A: 12(7/11)B: 15C: 15(3/11)D: 17(8/11)
参考答案: C 本题解释: C 解析: 甲表比标准时间每小时快3/9=1/3分,乙表比标准时间每小时慢5/7分。甲、乙两表每小时相差是1/3+5/7=22/21分8时31分-8时15分=16分按追及问题,追及路程为16分,速度差是每小时22/21分,求追及时间。16÷22/21=16×21/22=15(3/11)(小时)至少再经过15311小时,两钟表的指针指在同一时刻。
11、(2003山东,第10题)四个连续自然数的积为3024,它们的和为_____。
A: 26B: 52C: 30D: 28
参考答案: C 本题解释:参考答案:C题目详解:解法一:将3024进行因数分解:
。通过构造法我们可以得到:这几个数是6、7、8、9,它们的和是30,所以,选C。解法二:由于这四个数的乘积3024不是5的倍数:因此其中任何一个都不是5的倍数;而尾数是0和5的数都是5的倍数,故这四个数中任何一个数的尾数都不是0和5:所以只可能是1、2、3、4或6、7、8、9,所以它们和的尾数必然为0;所以,选C。解法三:设四个连续的自然数a、b、c、d:它们的中位数(即平均数)应该是b、c的平均数,即比b大0.5,也比C小0.5的那个数。我们将A、B、C、D一一代入,发现如果和是26、52、30、28,平均数分别应该是6.5、13、7.5、7,明显只有A、C满足。如果平均数(即中位数)是6.5:那这四个数应该就是5、6、7、8;如果平均数(即中位数)是7.5:那这四个数应该就是6、7、8、9。简单判断前者乘积尾数为0,不满足条件,所以,择C。考查点:数量关系>数学运算>计算问题之算式计算>速算与技巧>因式分解法
12、河流赛道长120米,水流速度2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?_____
A: 48B: 50C: 52D: 54
参考答案: C 本题解释:正确答案是C考点行程问题解析由于水速为2米/秒,所以顺行时候甲船速度是8米/秒,乙船速度是6米/秒。逆行时候甲船速度是4米/秒,乙船速度是2米/秒。甲乙的两次相遇分别在甲船第一次返回和甲船第二次顺行途中,甲第一次返回原地花费时间为120/8+120/4=45秒,此时乙到达对岸,逆水往回走,两船距离120-(4-2)×(45-120/6)=70米,再次相遇需要的时间为70÷(8+2)=7。所以总时间为45+7=52秒。故正确答案为C。
13、一个自然数,它的各个数位上的数字和为60,那么这个自然数最小是多少?_____
A: 9879899B: 7899999C: 6799999D: 6999999
参考答案: D 本题解释:参考答案
题目详解:一个自然数的值要最小:首先要求它的数位最少;其次要求其高位的数值尽量小;由于各数位上的和固定为6:要想数位最少,各位数上就要尽可能多地出现9:而
.数字进行拆分后排列得到:满足条件的最小自然数为6999999。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
14、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:_____
A: 60;B: 65;C: 70;D: 75;
参考答案: A 本题解释:【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种
15、某日人民币外汇牌价如下表(货币单位:人民币元),按照这一汇率,100元人民币约可以兑换()美元。
A: 12.61B: 12.66C: 12.71D: 12.76
参考答案: C 本题解释:【答案】C。解析:由表格,100美元=786.97人民币,则1美元=7.8697人民币,100人民币可以兑换为100÷7.8697≈10000÷787≈12.709≈12.71(美元),故正确答案为C。
16、(2002广东,第98题)中午12点整时,钟面上时针与分针完全重合。那么到当晚12点时,时针与分针还要重合了多少次?_____
A: 10B: 11C: 12D: 13
参考答案: B 本题解释:参考答案:B题目详解:解法一:从中午12点到晚上12点,时针走了1圈,分针走了12圈,比时针多走了11圈。因此,时针与分针重合了11次。选择B。解法二:根据基本知识点:由于时针和分针24小时内重合22次,所以12小时内重合11次。考查点:数量关系>数学运算>特殊情境问题>钟表问题>时针与分针的角度关系
17、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39。求这个三位数?_____
A: 196B: 348C: 267D: 429
参考答案: C 本题解释:正确答案是C考点多位数问题解析采用排除法,根据”各位上的数的和是15”,排除A。根据”如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39”,可以将B、C、D各项的值分别乘以3然后减去39,可得1005、762、1248,只有C满足条件。故正确答案为C。标签直接代入
18、一百张牌抽掉奇数牌,然后再抽掉剩下牌中位于奇数位的牌……如此最后剩下的一张是原来100张牌排序中的第几张呢?_____
A: 63 B: 64 C: 65 D: 66
参考答案: B 本题解释:B
19、中国现行的个人所得税法于2007年12月29日公布,自2008年3月1日起施行。法律条文第十五条规定如下:
(注:本表所称每月应纳税所得额是指依照本法第六条的规定,以每月收入额减除费用二千元后的余额或者减除附加减除费用后的余额。)假设某人上月收入为6000元,不考虑保险,速算折扣数等其他费用,此人的个人所得税为:_____
A: 450元B: 475元C: 550元D: 575元
参考答案: B 本题解释:参考答案:B题目详解:某人上月收入为6000元,那么他这个月应纳税所得额是指以每月收入额减除费用二千元后的余额或者减除附加减除费用后的余额,也就是6000-2000=4000部分。不超过500元,税费为:500×5%;超过500元至2000元的部分,税费为:(2000-500)×10%;超过2000元至5000元的部分,税费为:(4000-2000)×15%;所以,此人的个人所得税为:500×5%+(2000-500)×10%+(4000-2000)×15%=475。所以,选B。考查点:数量关系>数学运算>特殊情境问题>分段计算问题
20、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里碰面,下次相会将在星期几?_____
A: 星期一B: 星期五C: 星期二D: 星期四
参考答案: C 本题解释:C解析:此题乍看上去是求9,6,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,7,8的最小公倍数。既然该公倍数是7的倍数,那么肯定下次相遇也是星期二。(10,7,8的最小公倍数是5×2×7×4=280。280÷7=40,所以下次相遇肯定还是星期二。)
21、四个相邻质数之积为17 017,他们的和为_____。
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:【答案】A。解析:l7017=l7×l3×11×7,它们的和为48。
22、父亲与两个儿子的年龄和为84岁,12年后父亲的年龄等于两个儿子的年龄之和,请问父亲现在多少岁?_____
A: 24B: 36C: 48D: 60
参考答案: C 本题解释:正确答案是C考点年龄问题解析设现在父亲为m岁,两个儿子共n岁,则可得如下:m+n=84,m+12=n+12×2,解得m=48,n=36,即现在父亲为48岁,故正确答案为C。
23、从钟表的12点整开始,时针与分针的第1次垂直与再一次重叠中间相隔的时间是:_____
A: 43分钟B: 45分钟C: 49分钟D: 61分钟
参考答案: C 本题解释:参考答案:C题目详解:分针1分钟走6度,时针1分钟走0.5度,分针与时针从第1次垂直到重叠时,分针比时针多走了270度,故所用时间为
分钟。考查点:数量关系>数学运算>特殊情境问题>钟表问题>时针与分针的角度关系
24、在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?_____
A: 8点55分B: 9点C: 9点5分D: 9点20分
参考答案: C 本题解释:参考答案C题目详解:设这一时刻红、蓝甲虫走了
分钟,那么
.解得
=35分钟。因此这一时刻是9点5分。考查点:数量关系>数学运算>行程问题>追及问题>直线追及问题>直线一次追及问题
25、有10个优秀名额,分别分给3个科室,且科室一至少分1个名额,科室二至少分2个名额,科室三至少分3个名额,问有多少种分配方案?_____
A: 10B: 15C: 20D: 30
参考答案: B 本题解释:B.【解析】这是一道排列组合问题。先拿出3个名额,分别给科室二和科室三1个和2个名额,剩下的7个名额分给三个科室,每个科室至少一个名额,可用插板法求解,在6个空格中插入2个插板则分配方法有
<p>15种分法,因此,本题的正确答案为B选项。
26、五个人平均身高是169.4厘米,从矮到高排成一列,前三个人平均身高是166厘米,后三个人平均身高是172厘米,中间那个人身高是多少厘米?_____
A: 167B: 168C: 169D: 170
参考答案: A 本题解释:参考答案:A题目详解:中间那个人身高为:中间那个人的身高=前三个人的总身高+后三个人的总身高-
个人的身高;即
厘米;所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值
27、5人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重最轻的人最重可能重_____
A: 80斤 B: 82斤 C: 84斤 D: 86斤
参考答案: B 本题解释:B。【解析】5个80斤的则为400斤,剩余23斤,分一下。 从0、1、2、3、4、5、6、7中选,最轻只有选2了,如选3,则3、4、5、6、7加起来超过23。所以为82斤。
28、某原料供应商对购买其原料的顾客实行如下优惠措施:①一次购买金额不超过1万元,不予优惠;②一次购买金额超过1万元,但不超过3万元,给九折优惠;③一次购买金额超过3万元,其中3万元九折优惠,超过3万元部分八折优惠。某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他一次购买同样数量的原料,可以少付:_____
A: 1460元B: 1540元C: 3780元D: 4360元
参考答案: A 本题解释:【解析】A。第一次购买原料付款7800元,原料的总价值应为7800元,第二次购买时付款26100元,原料的总价值应为26100÷0.9=29000元。如果要将两次购买变成一次购买,则总价值应为7800+29000=36800元,而应该付款额为30000×0.9+6800×0.8=32440元,一次性购买比分两次购买可以节约7800+26100-32440=1460元。
29、把一个边长为4厘米的正方形铁丝框拉成两个同样大小的圆形铁丝框,则每个圆铁丝框的面积为_____。
A: AB: BC: CD: D
参考答案: D 本题解释:D【解析】设铁丝拉成的圆的半径为r,则4×4=2×2πr,r=
,圆形面积S=πr2=
。
30、_____
A: AB: BC: CD: D
参考答案: A 本题解释:正确答案是A考点几何问题解析
31、某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费。每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?_____
A: 43,51B: 51,43C: 51,45D: 45,51
参考答案: C 本题解释:参考答案:C题目详解:观察题目,显然3元3角不能整除5角,所以甲一定超出了50度,而超出部分并不能整除8角,所以乙肯定没有超过50度。设甲比50度多
度,乙比50度少
度,可列方程为:
,可知
不可能大于4,故有
。故甲用了51度,乙用了45度。所以,选C。考查点:数量关系>数学运算>特殊情境问题>分段计算问题
32、百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?_____
A: 65B: 70C: 75D: 80
参考答案: C 本题解释:C设原价为x元,则80%x+25=x,x=75元。
33、甲、乙、丙、丁四人共同做一批纸盒,甲做的纸盒数是另外三人做的总和的一半,乙做的纸盒数是另外三人做的总和的1/3,丙做的纸盒数是另外三人做的总和的1/4,丁一共做了169个,则甲一共做了_____纸盒。
A: 780个B: 450个C: 390个D: 260个
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析分析题意可知,甲、乙、丙分别做了总纸盒数的1/3、1/4、1/5,那么总的纸盒数为169÷(1-1/3-1/4-1/5)=780个,甲一共做了780×1/3=260个。故正确答案为D。
34、小伟参加英语考试,共50道题,满分为100分,得60分算及格。试卷评分标准为做对一道加2分。做错一道倒扣2分,结果小伟做完了全部试题但没及格。他发现,如果他少做错两道题就刚好及格了。问小伟做对了几道题?_____
A: 32 B: 34 C: 36 D: 38
参考答案: D 本题解释:【答案】D。解析:少做错2道刚好及格,多做对一道多得4分,所以小伟实际得了60-2×4=52分。设作对x道,则2x-2(50-x)=52,解得x=38。
35、将两位数的个位数与十位数互换后所得的数是原来的十分之一,这样的两位数有多少个?_____
A: 6B: 9C: 12D: 15
参考答案: B 本题解释:B【解析】设原数字的个位数字为x,十位数字为y,则得:(10y+x)X1/10=10x+y化简得x=0个位数字是0的两位数有10,20,30,40,50,60,70,80,90,共9个,故正确答案为B。
36、2007年4月20日,上证综指早盘高开11点,以3460.90点开盘后,随即逐波上扬,至终盘报收于3584.20点,较上一个交易日上涨了_____
A: 3.56%B: 11点 C: 113.70点 D: 134.30点
参考答案: D 本题解释: 【解析】较上一个交易日上涨多少应该以上个交易日收盘点数为准,所以高开的11点依然属于今天上涨的部分,故有
点。故选D。
37、某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是_____。
A: 2.5:1B: 3:1C: 3.5:1D: 4:1
参考答案: B 本题解释:正确答案是B考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。
38、小王收购了一台旧电视机,然后转手卖出,赚取了30%的利润,1个月后,客户要求退货,小王和客户达成协议,以当时交易价格的90%回收了这台电视机,后来小王又以最初的收购价将其卖出。问小王在这台电视机交易中的利润率为:_____
A: 13% B: 17% C: 20% D: 27%
参考答案: A 本题解释:【答案】A。13%。
39、有100人参加运动会的三个项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人,问至少有多少人参加了不只一项活动?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:正确答案是B考点容斥原理问题解析由题意可知,参加跳远的有50人,参加跳高的有40人,参加赛跑的有30人;要使得参加不止一项的人数最少,那么重复参加的人全部都是参加3个项目的。50+40+30-100=20人次,因为重复参加的人都是3个项目,所以被重复计算了2次,则多出的人数是这部分人实际人数的2倍,可得20÷2=10人。故正确答案为B。
40、共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有_____个。
A: 2B: 3C: 5D: 7
参考答案: A 本题解释:【答案】A。解析:设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
41、林子里的猴子喜欢吃的野果,23只猴子可以在9周内吃光,21只猴子可以在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光(假定野果生长的速度不变)?_____
A: 2周B: 3周C: 4周D: 5周
参考答案: C 本题解释:正确答案是C考点牛吃草问题解析设原有野果为N,每周生长的野果可供Y个猴子吃,根据题意可得:N=(23-Y)×9,N=(21-Y)×12,解得N=72,Y=15。因此若33只猴子一起吃,需要时间为72÷(33-15)=4周。故正确答案为C。公式:在牛吃草模型背景下,公式为N=(牛数-Y)×天数,其中N表示原有草量的存量,以牛数与天数的乘积来衡量;Y表示专门吃新增加草量所需要的牛数。标签公式应用
42、把一根钢管锯成两段要用4分钟,若将它锯成8段要多少分钟?_____
A: 16B: 32C: 14D: 28
参考答案: D 本题解释:参考答案
题目详解:根据题意,可知:此钢管锯一次要用4分钟,那么将它锯成8段要锯7次需要7×4=28分钟。所以,选D。注:本题的前提是不能叠在一起锯,叠在一起时间应该会更长。考查点:数量关系>数学运算>特殊情境问题>植树问题>两端均不植树
43、某校学生列队以8千米/小时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队的老师传达一个命令,然后立即返回队尾,这位学生的速度为12千米/小时,从队伍出发赶到排头又回到队尾共用了7.2分钟,那么学生的队伍长_____米。
A: 360B: 400C: 450D: 500
参考答案: B 本题解释:B【解析】8千米/小时=(400/3)米/分,12千米/小时=200米/分,设队伍长χ米,则χ÷(200-400/3)+χ÷(200+400/3)=7.2,解得χ=400。
44、李师傅加工一批零件,如果每天做50个,要比计划晚8天完成;如果每天做60个,就可提前5天完成,这批零件共有多少个?_____
A: 3500个 B: 3800个 C: 3900个 D: 4000个
参考答案: C 本题解释:C。【解析】每天做50个,到规定时间还剩50×8=400个。每天做60个,到规定时间还差60×5=300个。规定时间是:(50×8+60×5)/(60-50)=70天零件总数是:50×(70+8)=3900个。
45、某校按字母A到Z的顺序给班级编号,按班级编号加01、02、03……,给每位学生按顺序定学号,若A~K班级人数从15人起每班递增1名,之后每班按编号顺序递减2名,则第256名学生的学号是多少?_____
A: M12B: N11C: N10D: M13
参考答案: D 本题解释:正确答案是D考点多位数问题解析此题对应数列呈先升后降趋势,根据题意可明确给出班级人数数列,待求第256名学生的位置,由题意知A班有15人,B班有16人,……,递增到K班25人,然后L班23人,逐班减少。结合四个选项可知,第256名学生不是在M班,就是在N班,此即帮助限定范围,于是直接计算从A班到L班的学生总数为15+16+……+25+23=(15+25)÷2×11+23=243(人),距离256为13,可知第256名学生的学号为M13,故正确答案为D。
46、一批木材全部用来加工桌子可以做30张,全部用来加工床可以做15张。现在加工桌子、椅子和床各2张,恰好用去全部木材的1/4。剩下的木材全部用来做椅子,还可以做多少把?_____
A: 40把B: 30把C: 25把D: 5把
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析由题意得每张桌子用这批木材的1/30,每张床用这批木材的1/15,则加工一把椅子用去木材的1/4÷2-1/30-1/15=1/40,故剩余的3/4木材还可做椅子3/4÷1/40=30把,正确答案为B。
47、某单位有60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人?_____
A: 12B: 14C: 15D: 19
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析解析1:穿白色上衣的有60-29=31人,其中穿白上衣黑裤子的有31-12=19人,穿黑上衣黑裤子的有34-19=15人。解析2:设白上衣黑裤子有a人,黑上衣黑子裤有b人,黑上衣蓝裤子有c人,根据题意有a+b+c=60-12,a+b=34,b+c=29,则b=34+29-(60-12)=15人。故正确答案为C。
48、某单位举办活动,需要制作8米长的横幅20条。用来制作横幅的原料有两种,一种每卷10米,售价10元;另一种每卷25米,售价23元。如果每卷原料截断后无法拼接,则该单位购买横幅原料最少需要花费_____元。
A: 146B: 158C: 161D: 200
参考答案: B 本题解释:正确答案是B考点统筹规划问题解析每卷10米的只能制作一条横幅,因此相当于单价为10元;每卷25米的只能制作三条条幅,因此相当于单价为23/3<10元。因此要制作20条横幅,购买方式为每卷25米的购买6卷,每卷10米的购买2卷,花费为23×6+10×2=158元。故正确答案为B。
49、某单位职工24人中,有女性11人,已婚的16人。在已婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:B。易知该单位有男性13人,其中已婚的有10人,故未婚的有3人,选B。
50、
_____
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点计算问题解析
故正确答案为C。
51、从12时到13时,钟的时针与分针可成直角的机会有_____。
A: 1次B: 2次C: 3次D: 4次
参考答案: B 本题解释:【答案解析】一个小时内成直角只有两次,选B。
52、二十几个小朋友围成一圈,按顺时针方向一圈一圈地连续报数。如果报2和200的是同一个人,那么共有_____个小朋友。
A: 22B: 24C: 27D: 28
参考答案: A 本题解释:A【解析】小朋友的人数应是(200-2)=198的约数,而198=2×3×3×11。约数中只有2×11=22符合题意。
53、为了把2008年北京奥运办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗_____。
A: 8500棵B: 12500棵C: 12596棵D: 13000棵
参考答案: D 本题解释:答案:D。设两条路共长z米,共有树苗y棵,在两条路的两旁栽树则有4条线要栽树。则x÷4+4=y+2754,x÷5+4=y-396,解出y=13000棵,所以选D。
54、有a、b、c、d四条直线,依次在a线上写1,在b线上写2,在c线上写3,在d线上写4,然后在a线上写5,在b线、c线和d线上写数字6,7,8…按这样的周期循环下去,问数字2007在哪条线上?_____
A: a线B: b线C: c线D: d线
参考答案: C 本题解释:正确答案是C考点周期问题解析该循环以4为周期,2007÷4=501余3,那么2007应该标在c线上,故正确答案为C
55、_____
A: 5B: 6C: 8D: 9
参考答案: A 本题解释:正确答案是A考点计算问题解析
标签尾数法
56、从一张1952mm×568mm的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断地重复,最后一共可剪得正方形多少个?_____
A: 8B: 10C: 12D: 14
参考答案: D 本题解释:从长1952mm、宽568mm的长方形纸片上首先可剪下边长为568mm的正方形,这样的正方形的个数恰好是1952除以568所得的商,而余数恰好是剩下的长方形的宽,于是有:1952÷568=3…248,568÷248=2…72,248÷72=3…32,72÷32=2…8,32÷8=4,因此一共可得到正方形3+2+3+2+4=14(个),故正确答案为D。
57、小吴到商店买布。有两种同样长的布料,小吴买了第一种布料25米,买了第二种布料12米,小吴买完后,第一种布料剩下的长度是第二种布料剩下的长度的一半。那么这两种布料原来共有_____米。
A: 26B: 38C: 72D: 76
参考答案: D 本题解释:【答案】D。解析:设原来每种布料的长度为x米,则依题意得出方程:2(X-25)=X-12,解得x=38米,所以两种布料的总长为76米,因此,本题答案为D选项。
58、现有A、B、C三桶油,先把A的1/3倒入B桶,再把B桶的1/4倒入C桶,最后把C桶的1/10倒入A桶,经这样操作后,三桶油各为90升。问A桶原来有油多少升?_____
A: 90B: 96C: 105D: 120
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析三桶油各为90升。先看第三步:把C桶的1/10倒入A桶之后都是90升,那么倒之前C桶是100升,A是80升;再看第一步:把A桶的1/3倒入B桶之后A还有80升,那么A原来就有120升。故正确答案为D。
59、0, 1, 1, 1, 2, 2, 3, 4八个数字做成的八位数,共可做成______个。_____
A: 2940B: 3040C: 3142D: 3144
参考答案: A 本题解释:A【解析】不妨先把这8个数字看作互不相同的数字,0暂时也不考虑是否能够放在最高位,那么这组数字的排列就是P(8,8),但是,事实上里面有3个1,和2个2,3个1在P(8,8)中是把它作为不同的数字排列的,那就必须从P(8,8)中扣除3个1的全排列P(3,3),因为全排列是分步完成的,在排列组合中,分步相乘,分类相加。可见必须通过除掉P(3,3)才能去掉这部分重复的数字形成的重复排列。2个2当然也是如此,所以不考虑0作为首位的情况是 P88/(P33×P22)。现在再来单独考虑0作为最高位的情况有多少种:P77/(P33×P22),最后结果就是:P88/(P33×P22)-P77/(P33×P22)=2940。
60、20+19-18-17+16+15-14-13+12+11···+4+3-2-1=_____。
A: 10B: 15C: 19D: 20
参考答案: D 本题解释:【答案】D。解析:解析1:原式=(20-18)+(19-17)+(16-14)+(15-13)+···+(4-2)+(3-1)=2+2+2+2+···+2+2=2×10=20。故正确答案为D。解析2:原式=20+(19-18-17+16)+(15-14-13+12)+…+(3-2-1)=20。故正确答案为D。
61、现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍。两次共放了22个球。最终甲箱中球比乙箱_____。
A: 多1个B: 少1个C: 多2个D: 少2个
参考答案: A 本题解释:正确答案是A,全站数据:本题共被作答1次,正确率为0.00%,易错项为C解析第一次放入共6个球,所以第二次共放入22-6=16个球,所以列方程得:2甲+3乙+4丙=16,此时观察可知,乙的球数必须为偶数,否则方程不平衡,所以乙中是原来的2个球的箱子。代入1,3两值可知,甲=3,丙=1。所以甲中有9个球,乙中有8个球,多1个。故正确答案为A。速解解不定方程的常用技巧--利用奇偶性求解不定方程。考点不定方程问题笔记编辑笔记
62、(2006北京社招,第11题)
的值是_____。
A: 1800B: 1850C: 1900D: 2000
参考答案: A 本题解释:参考答案:A题目详解:应用因式分解法:
;
考查点:数量关系>数学运算>计算问题之算式计算>速算与技巧>因式分解法
63、建造一个容积为8立方米,深为2米的长方体无盖水池。如果池底和池壁的造价分别为120元/平米和80元/平米,那么水池的最低总造价是_____元。
A: 1560 B: 1660 C: 1760 D: 1860
参考答案: C 本题解释: C。设水池的长为X,总造价为y,则Y=120×4+2x2×(4/x)×80+2×2×x×80,由于2×2×(4/x)×80+2X2×X×80≥1280,所以Y的最小值为1760。故正确答案为C。
64、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14B: 17C: 28D: 34
参考答案: D 本题解释:参考答案
题目详解:根据题意,由于苹果分到最后余2,桔子分到最后余7,那么:
,
两个数会被整除。此题可转化为:求238和306的最大公约数,因为:
,
,可知238和306的最大公约数是34。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
65、有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?_____
A: 12B: 15C: 14D: 13
参考答案: C 本题解释:参考答案:C题目详解:将这20个数字分别列为如下:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13。考虑最差情况,就是前面抽出13个数字就是1-13,然后取第14个数字的时候不管取什么,肯定是14-20中的一个,与前面的数字相减必然能等于13。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
66、5人参加一次小测验,试卷上的10道题目均为4选1的单项选择题,若5个人全部答完所有题目,那么不同的答卷最多有_____种。
A: 410B: 510C: 40D: 200
参考答案: A 本题解释:A【解析】从第1题开始最多可能出现4种不同的答案,然后在做第2题时也可能有4种不同的答案,直到第10题依然会出现4种答案。符合排列组合中乘法原理,因此不同的答卷一共会出现:4×4×4×…×4=410(种)。故答案为A。
67、龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停的跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,以此类推。那么先到达终点比后到达终点的快多少分钟?_____
A: 10B: 20C: 15D: 13.4
参考答案: D 本题解释:参考答案D题目详解:乌龟刚时
分钟;兔子总共跑了
分钟。
,兔子一共休息了5次,共
分钟。所以兔子共用时:
分钟。兔子先到达终点,比后到达终点的乌龟快
分钟。考查点:数量关系>数学运算>行程问题>追及问题>直线追及问题>直线一次追及问题
68、某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。问他们中最多有几人买了水饺?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:正确答案是C考点不定方程问题解析假定购买三种食物人数分别为X、Y、Z,根据题意X+Y+Z=6,15X+7Y+9Z=60。要使得水饺最多,则其他尽可能少。根据奇偶性质,可知X、Y、Z三个数中必然两个为奇数一个为偶数,或者三个均为偶数。将选项代入验证,若Y=4,此时X、Z无正整数解;若Y=3,可知X=2,Z=1,符合题意。因此正确答案为C。秒杀技得到15X+7Y+9Z=60后,注意到15、9、60均能被3整除,因此7Y必然能被3整除,仅C符合。
69、(2004国家A类 ,第38题)
的个位数字是_____。
A: 1B: 2C: 3D: 7
参考答案: D 本题解释:参考答案
题目详解:应用首尾数法:
所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>速算与技巧>首尾数法
70、有三块草地,面积分别是4亩、8亩、10亩。草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问第三块草地可供50头牛吃几周?_____
A: 6B: 9C: 3D: 7
参考答案: B 本题解释:参考答案:B题目详解:根据题意:此题属于M头牛吃W亩草问题,将单位牧场的牛数代入“N”;单位牧场草的原有存量为y;单位时间草的增长量即自然增长速度为x;第三块地可供50头牛存量完全消失所消耗用的时间3为T;代入公式:
所以,选B考查点:数量关系>数学运算>特殊情境问题>牛儿吃草问题>M头牛吃W亩草问题
71、某社区组织开展知识竞赛,有5个家庭成功晋级决赛的抢答环节,抢答环节共5道题。计分方式如下:每个家庭有10分为基础分:若抢答到题目,答对一题得5分,答错一题扣2分;抢答不到题目不得分。那么,一个家庭在抢答环节有可能获得_____种不同的分数。
A: 18B: 21C: 25D: 36
参考答案: B 本题解释:正确答案是B考点排列组合问题解析抢到0题,得分情况:对0题;抢到1题,得分情况:对0题、对1题;抢到2题,等分情况:对0题、对1题、对2题;同理可推知,抢到n题,得分情况有n+1种,而共有5题,所以总得分情况为1+2+3+4+5+6=21种。故正确答案为B。
72、超市经理为某商品准备了两种促销方案,第一种是原价打7折;第二种是买二件赠一件同样商品。经计算,两种方案每件商品利润相差0.1元,若按照第一种促销方案,则100元可买该商品件数最大值是_____
A: 33B: 47C: 49D: 50
参考答案: B 本题解释:【答案】B。解析:设该商品原价为x,则第一种方案下,三件促销价格为2.1x,第二种方案下,三件促销价格2x,两种方案差价为0.1x。根据题意,两种方案每件商品的利润差为0.1元,则三件商品差价0.3元,即0.1x=0.3,解得x=3元,那么按照第一种促销方案,商品售价2.1元,100元最多可以购买该商品47件,选择B项。
73、⊙b=4a+3b,若5⊙(6⊙x)=110,则x的值为_____。
A: 5B: 4C: 3D: 2
参考答案: D 本题解释:正确答案是D考点计算问题解析按照新定义运算展开,得4×5+3×(4×6+3x)=110,解得x=2。
74、在一个口袋中有lO个黑球、6个白球、4个红球.至少从中取出多少个球才能保证其中有白球? _____
A: 14B: 15C: 17D: 18
参考答案: B
75、把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有_____种不同的分法。
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:正确答案是B考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。
76、甲、乙、丙、丁四个人比赛打羽毛球,每两个都要赛一场,已知甲胜了丁,并且甲、乙、丙三人胜的场数相同,那么丁胜了几场?_____
A: 6 B: 0 C: 12 D: 3
参考答案: B 本题解释:【解析】B。每人至多赛3场,排除A、C。甲胜丁,则丁至少输1场,排除D。
77、A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?_____
A: 9B: 25C: 49D: 81
参考答案: D 本题解释:【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
78、某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为_____。
A: 5:4:3B: 4:3:2C: 4:2:1D: 3:2:1
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。秒杀技得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。标签直接代入
79、从某车站以加速度为
始发的甲列车出发后9分钟,恰好有一列与甲列车同方向,并以每50m/s的速度做匀速运动的乙车通过该车站,则乙车运行多少分钟与甲车距离为最近?_____
A: 9B: 3C: 5D: 6
参考答案: D 本题解释:参考答案D题目详解:确定甲列车在行驶9分钟之后的终速度:对于匀变速而言,终速度=初始速度+加速度×时间,初始速度为0m/s,故甲列车在行驶9分钟之后的速度为:0+1/18×540=30m/s(注意单位统一);求距离最近的时间:设速度相等时乙列车运行时间为t秒,根据终速度=初始速度+加速度×时间,初始速度为0m/s,则50=0+1/18×(9×60+t),解得t=360秒,即6分钟。所以,选D,考查点:数量关系>数学运算>行程问题>追及问题>直线追及问题>直线多次追及问题
80、如图,已知直角梯形ABCD的上底长18厘米,下底长27厘米,高24厘米,三角形ABF、三角形ADE和四边形AECF’面积相等。三角形AEF的面积为多少平方厘米?_____
A: 165B: 132C: 160D: 156
参考答案: D 本题解释:参考答案
题目详解:依题意:
平方厘米;且
平方厘米;故
厘米;则
厘米;
方厘米;故
厘米,
厘米,
平方厘米;
平方厘米;所以,选D。考查点:数量关系>数学运算>几何问题>平面几何问题>周长与面积相关问题
81、三筐苹果共重120斤,如果从第一筐中取出15斤放入第二筐,从第二筐中取出8斤放入第三筐,从第三筐中取出2斤放入第一筐,这时三筐苹果的重量相等,问原来第二筐中有苹果多少斤?_____
A: 33B: 34C: 40D: 53
参考答案: A 本题解释:正确答案是A考点其他解析由题意可知,最后三个筐一样重,一共是120斤,则三个筐都应该是40斤,第二个筐放进15斤,拿走8斤,就等于放进去7斤,所以原来的重量是40-7=33,因此原来第二筐中有苹果33斤,故正确答案为A。
82、四个相邻质数之积为17 017,他们的和为_____。
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:【答案】A。解析:l7017=l7×l3×11×7,它们的和为48。
83、一个质数的3倍与另一个质数的2倍之和等于20,那么这两个质数的和是_____。
A: 8 B: 9 C: 7 D: 6
参考答案: B 本题解释:【解析】B。 设这两个质数分别为x、y,则3x+2y=20。2y和20都是偶数,则3x也是偶数,即x为偶数。又因为x同时是质数,则x=2,y=7。两质数之和x+y=9。故选B。
84、甲、乙、丙、丁四人今年分别是16、12、11、9岁。问多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?_____
A: 4B: 6C: 8D: 12
参考答案: B 本题解释:参考答案:B题目详解:解法一:代入法:将各选项代入即可得到B答案。解法二:现在甲、乙的年龄和为28,丙、丁的年龄和为20,相差8岁。而这两个年龄和之间的差是不变的,所以当甲、乙两人的年龄和为16,丙、丁两人的年龄和为8时,符合题意。而甲、乙两人的年龄差始终为4,所以两人年龄和为16时,甲10岁,乙6岁。正好是6年前的事情。所以,选B。解法三:设
年前,甲乙的年龄和丙丁年龄的2倍,由题意可得
,解得,
。所以,选B。考查点:数量关系>数学运算>特殊情境问题>年龄问题
85、公路上有三辆同向行驶的汽车,其中甲车的时速为63公里,乙、丙两车的时速均为60公里,但由于水箱故障,丙车每连续行驶30分钟后必须停车2分钟。早上10点,三车到达同一位置,问1小时后,甲、丙两车最多相距多少公里?_____
A: 5B: 7C: 9D: 11
参考答案: B 本题解释:正确答案是B考点行程问题解析在这1个小时中,丙车最多休息4分钟,也即丙在一个小时内最少行程为60×56÷60=56公里。而甲车持续行驶,可达63公里。因此两车最多相距7公里,故正确答案为B。
86、每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?_____
A: 40分钟B: 48分钟C: 56分钟D: 64分钟
参考答案: B 本题解释:参考答案B题目详解:他们第四次相遇时:三人跑的路程一定均为200的整数倍;而三个人的速度分别为250/3米/分,350/3米/分,450/3米/分;因此三人第四次相遇时:跑的时间一定是3的整数倍;只有B项符合;所以,选B。考查点:数量关系>数学运算>行程问题>追及问题>环线追及问题>环线多次追及问题
87、四位厨师聚餐时各做了一道拿手菜。现在要求每个人去品尝一道菜,但不能尝自己做的那道菜。问共有几种不同的尝法?_____
A: 6种B: 9种C: 12种D: 15种
参考答案: B 本题解释:正确答案是B考点排列组合问题解析
标签公式应用
88、在圆中画一个与这个圆等半径、圆心角是60°的扇形,圆内其余部分的面积是这个扇形面积的多少?_____
A: 4倍B: 5倍C: 6倍D: 8倍
参考答案: B 本题解释:正确答案是B考点几何问题解析
标签画图分析
89、某车间进行季度考核,整个车间平均分是85分,其中的人得80分以上(含80分),他们的平均分是90分,则低于80分的人的平均分是多少?_____
A: 68B: 70C: 75D: 78
参考答案: C 本题解释: 【解析】C。解法一、设x为所求,假设总共3人,其中2人80以上,1人低于80分。则
,记住此处别忘了用尾数法快速得到答案;解法二、利用十字交叉法解决混合平均问题。两部分人比例为2︰1,则其各自平均分到85分的距离应该反过来为1︰2=5︰10,直接得到75。
90、下列哪一个数介于1/2与2/3之间?_____
A:
B:
C:
D:
参考答案: A 本题解释:参考答案:A题目详解:将四个选项转化为小数比较可知,
,
,
,
;因此,只有
在0.5~0.67之间。所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>比较大小问题
91、173×173×173-162×162×162=_____。
A: 926183B: 936185C: 926187D: 926189
参考答案: D 本题解释:答案:D【解析】利用简单的猜测法。173的尾数是3,3的立方为27;162的尾数是2,2立方为8。两者相减尾数为9,所以判断173和162的立方之差的尾数为9。所以答案为D项。
92、某医院有一氧气罐匀速漏气,该氧气罐充满后同时供40人吸氧,60分钟后氧气耗尽,再次充满该氧气罐同时供60个人吸氧,则45分钟后氧气耗尽。问如果该氧气罐充满后无人吸氧,氣气耗尽需要多长时间? _____
A: 一个半小时 B: 两个小时C: 两个半小时 D: 三个小时
参考答案: D 本题解释:【答案】D。解析:设氧气罐漏气速度为x,结合题意可列方程:(40+x)×60=(60+x)×45,解得x=20,氧气罐总存量为360,则无人吸氧的情况下氧气耗尽需要的时间为360÷20=180分钟,即正确答案为D。
93、大小两个数的和是50.886,较大数的小数点向左移动一位就等于较小的数,求较大的数是_____。
A: 46.25B: 40.26C: 46.15D: 46.26
参考答案: D 本题解释:【答案】D。解析:观察选项发现,大数小数点后有两位,因为大小两个数的和是50.886,说明小数小数点后应该有三位,并且尾数为6,排除A、C选项。B选项,40.26小数点左移一位变为4.026,40.26+4.026=44.286≠50.886,排除B选项。D选项,46.26小数点左移一位变为4.626,46.26+4.626=50.886,因此,本题答案为D选项。
94、计算:(2+4+6+8+…+2010)-(1+3+5+7+…+2009)=_____。
A: 995B: 1011C: 1111D: 1005
参考答案: D 本题解释:【解析】原式=(2-1)+(4-3)+(6-5)+(8-7)+…+(2010-2009)=1+1+1+1+…+1从2到2010共有1005个偶数,所以原式等于1005个1相加,等于1005,故本题答案为D。
95、打印一份稿件,小张5小时可以打完这份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时可以完成?_____
A: 6B: 20/3C: 7D: 22/3
参考答案: B 本题解释:正确答案是B考点工程问题解析设总的稿件为60张,由题意,小张每小时打印1/15,小李每小时打印1/12,则小张、小李每小时分别能打印4张、5张。如果两个人合打,每小时打印9张,则打印完这份稿件需要60÷9=20/3(小时),故正确答案为B。标签赋值思想
96、某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?_____
A: 7种B: 12种C: 15种D: 21种
参考答案: C 本题解释:正确答案是C考点排列组合问题解析
标签分类分步
97、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
98、某水果店经销一种销售成本为每千克40元的水果。据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。水果店想在月销售成本不超过10000元的情况下,使得月销售利润最大,则定价应为每千克多少元?_____
A: 65B: 70C: 75D: 80
参考答案: C 本题解释:当销售单价定为每千克2元时,月销售量为:500—10×(χ一50)=1000一1Oχ,每千克的销售利润为(χ一40)元,所以月销售利润为:Y=(χ一40)(1000一1Oχ)=一1Oχ2+1400χ-40000=一10(χ一70)2+9000,因为月销售成本不超过10000元,所以40×(1000一1Oχ)≤10000,解得χ≥75。因为二次函数Y=一10(χ一70)2+9000的对称轴为χ=70,χ=75时离对称轴最近,此时Y取最大值,为8750。故本题正确答案为C。
99、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为_____。
A: 3.4平方米B: 9.6平方米C: 13.6平方米D: 16平方米
参考答案: C 本题解释:本题属于面积问题。因为把边长为1米的正方体木块置于水中有0.6米浸入水中,所以当将其分割为边长0.25米的正方体木块置于水中时,其浸入水中的高度为3/20米。则可以计算出其中一个分割后的正方体木块与水的接触面积为:(1/4)×(1/4)+4×(1/4)×(3/20)=1/16+3/20,又因为边长1米的正方体可以分割为64个边长为O.25米的正方体,所以题中所求面积为:64×(1/16+3/20)=13.6(平方米)。正确答案为C。
100、甲、乙、丙三队在A、B两块地植树,A地要植树900棵,B地要植树1250棵,已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?_____
A: 5B: 7C: 9D: 11
参考答案: D 本题解释:D【解析】 植树共需(900+1250)÷(24+30+32)=25(天)。乙应在A地干(900-24×25)÷30=10(天),第11天转到B地。故本题正确答案为D。