微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、一次知识竞赛,共3道题,每个题满分6分。给分时只能给出自然数0—6分。如果参加竞赛的人三道题的得分的乘积都是36分,并且任意两人三道题的得分不完全相同,那么最多有多少人参加竞赛? _____
A: 24B: 20C: 18D: 12
参考答案: D 本题解释:【解析】D。解析:36=1×6×6=2×3×6=3×3×4,三道题得1,6,6分有3种可能,三道题得2,3,6分有6中可能,三道题得3,3,4分有3种可能。故最多有3+6+3=12人。
2、某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?_____
A: 14B: 21C: 23D: 32
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析解析1:本题注意按照不合格得到三个类,进行容斥原理分析,分别设三项全部合格、仅一项不合格的产品有x、y种,根据题意可得:y+5+2=36-x,3×2+2×5+1×y=7+9+6,联立解得x=23,y=6,因此三项全部合格的食品有23种,故正确答案为C。解析2:不合格的食品数共有:7+9+6-5-2×2=13,则合格的数量为:36-13=23种,故正确答案为C。备注:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z。标签三集合容斥原理公式整体考虑公式应用
3、自然数
是一个两位数,它是一个质数,而且
的个位数字与十位数字都是质数,这样的自然数有多少个?_____
A: 4B: 6C: 8D: 12
参考答案: A 本题解释:参考答案:A题目详解:这样的数共有4个,23,37.53.73。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>质合性
4、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒?_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:【答案】C。解析:从一楼走到五楼,休息了3次,那么每爬上一层需要的时间为(210-30×3)÷4=30秒,故从一楼走到七楼需要30×(7-2)+30×(7-1)=330秒。故正确答案为C。
5、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?_____
A: 40B: 41C: 44D: 46
参考答案: C 本题解释:【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44
6、在一个家庭里,现在所有成员的年龄加在一起是73岁。家庭成员中有父亲、母亲、一个女儿和一个儿子,父亲比母亲大3岁,女儿比儿子大2岁。四年前家庭所有人的年龄总和是58岁,现在儿子多少岁?_____
A: 3B: 4C: 5D: 6
参考答案: A 本题解释:正确答案是A考点年龄问题解析四年前家庭里所有的人的年龄总和是58岁,则四年后家庭所有成员各长4岁,即58+(4×4)=74岁,而由题目可知是73岁,比74少了1岁,则说明四年前最小的儿子还没有出生,即最小的儿子现在是3岁。故正确答案为A。标签差异分析
7、某单位今年一月份购买5包A4纸、6包B5纸,购买A4纸的钱比B5纸少5元;第一季度该单位共购买A4纸15包、B5纸12包、共花费510元;那么每包B5纸的价格比A4纸便宜_____。
A: 1.5元B: 2.0元C: 2.5元D: 3.0元
参考答案: C 本题解释:C【解析】方程问题。设A4纸和B5纸的价格分别为x元和y元。由题意可得方程,6y-5x=5,15x+12y=510解得x=20,y=17.5,所以每包纸比A4纸便宜20-17.5=2.5元。答案选择C选项。
8、(2008陕西,第10题)在一条公路的两边植树,每隔3米种一棵树,从公路的东头种到西头还剩5棵树苗,如果改为2.5米种一棵,还缺树苗115棵,则这条公路长多少米?_____
A: 700B: 800C: 900D: 600
参考答案: C 本题解释:参考答案:C题目详解:依题意:设公路长为
,一共有
棵树根据植树公式:
所以,选C。考查点:数量关系>数学运算>盈亏问题
9、甲、乙、丙、丁四人,其中每三个人的岁数之和分别是55、58、62、65。这四个人中年龄最小的是_____。
A: 7岁B: 10岁C: 15岁D: 18岁
参考答案: C 本题解释:正确答案是C考点平均数问题解析将55、58、62、65直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为(55+58+62+65)÷3=80,因此最小的数为80-65=15。故正确答案为C。
10、一个两位数除以一个一位数,商仍是两位数,余数是8。问:被除数、除数、商以及余数之和是多少? _____
A: 98B: 107C: 114D: 125
参考答案: D 本题解释:【答案】D。解析:猜证结合的98÷10=9余8,10+98+9+8=125。
11、一圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米.A等于几米?_____
A: 3.6B: 2.8C: 6.4D: 9.2
参考答案: A 本题解释:参考答案:A题目详解:列方程:
所以,选A。考查点:数量关系>数学运算>盈亏问题
12、在一只底面半径是20cm的圆柱形小桶里,有一半径为l0cm的圆柱形钢材浸没在水中,当钢材从桶中取出后,桶里的水下降了3cm。求这段钢材的长度。_____
A: 3cmB: 6cmC: 12cmD: 18cm
参考答案: C 本题解释:【答案】C。解析:钢材的体积与水下降的体积相等,钢材长度与水下降的高度之比等于二者底面积之比的倒数,由此可得钢材长度为3×4=12。
13、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是_____。
A: 166米 B: 176米 C: 224米 D: 234米
参考答案: B
14、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分B: 12点15分C: l2点20分D: 12点30分
参考答案: A 本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。
15、A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分,小孙的速度为105米/分,且经过12分钟后两人第二次相遇。问A,B两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:易知到第二次相遇时,两人合起来走过的距离恰为A、B两校距离的3倍,因此A、B两校相距(85+105)×12÷3=760(米)。故选D。
16、甲每4天进城一次,乙每7天进城一次,丙每12天进城一次,某天三人在城里相遇,那么三人下次相遇至少需要多少天?_____
A: 12天B: 28天C: 84天D: 336天
参考答案: C 本题解释:正确答案是C考点倍数约数问题解析三人下次相遇时间隔时间是3、7、12的最小公倍数,即84天。故正确答案为C。标签最小公倍数
17、3×999+8×99+4×9+8+7的值是:_____
A: 3840B: 3855C: 3866D: 3877
参考答案: A 本题解释:A。四个选项尾数各不相同,可考虑结果的尾数。7+2+6+8+7=30,所以尾数为0,故选A。
18、已知A股票上涨了1.32元,相当于该股票原价的21%,B股票上涨3.68元.也相当于原价的21%,则两种股票原价相差_____
A: 11.24元B: 8.58元C: 10.32元D: 10.58元
参考答案: A 本题解释:正确答案:A解析:增长的数值除以增长的百分比3.68÷21%-1.32÷21%≈11。故答案为A。
19、商场销售某种电脑,第一个月按
的利润定价销售,第二个月按
的利润定价销售,第三个月按第二个月定价的
进行销售,第三个月销售的电脑比第一个月便宜1820元。那么,这种电脑商场的进价是_____。
A: 5900元B: 5000元C: 6900元D: 7100元
参考答案: B 本题解释:参考答案:B题目详解:解法一:根据题意,应用代入法。只有进价为5000的时候,第一个月的定价为:5000×﹙1+50%)=7500,第二个月的定价为:5000×﹙1+42%)=7100,第三个月的定价为:7100×80%=5680,第三个月销售的电脑比第一次月销售的电脑才会便宜:7500-5680=1820。所以,选B。解法二:设进价为x,则:第一个月的定价为:1.5x;第二个月的定价为:1.42x;第三个月的定价为:
;根据题意:
;解得,
。所以,选B。考查点:数量关系>数学运算>利润利率问题>成本、售价、利润、利润率之间的等量关系问题
20、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?_____
A: 17.25B: 21C: 21.33D: 24
参考答案: B 本题解释:参考答案:B题目详解:解法一:在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨,因此,选B。解法二:水量越大,费用越高,所以要用水最多,所以每个月应该用满10吨,所以总吨数为:
。所以,选B。考查点:数量关系>数学运算>特殊情境问题>分段计算问题
21、电影票原价若干元,现在每张降价3元出售,观众增加一半,收入也增加1/5,一张电影票原来为多少元?_____
A: 4.5B: 7.5C: 12D: 15
参考答案: D 本题解释:正确答案是D考点经济利润问题解析根据题意,设原来每张电影票m元,观众n人,则有m×n×(1+1/5)=(m-3)×n×(1+1/2),解之得m=15。故正确答案为D。
22、用0、1、2、3、…、9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?_____
A: 279B: 301C: 351D: 357
参考答案: C 本题解释:正确答案是C考点多位数问题解析题目中涉及两个构造条件,一是和为奇数,二是和尽可能大,从后一个条件入手,应把10个数字中最大的5个放在十位上,即十位上的数字为5、6、7、8、9,个位上的数字为4、3、2、1、0,即可构造出和最大的5个两位数为54、63、72、81、90,但此时这5个数的和为偶数,需进一步调整。只需将个位上的某个奇数(或偶数)与十位上的某个偶数(或奇数)调换位置即可,同时又要保证和最大,因此选择个位和十位上的数字相差最小的54,调换位置后为45,此时5个数的和为45+63+72+81+90,根据尾数法可直接确定,故正确答案为C。标签构造调整尾数法
23、有一笔奖金,按1:2:3的比例来分,已知第三人分450元,那么这笔奖金总共是_____元。
A: 1150 B: 1000 C: 900 D: 750
参考答案: C 本题解释:C。根据题意可知,这笔奖金共分为6份,而分到3份的第三人拿到了450元,则6份当是450×2=900元。所以正确答案为C项。
24、甲乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂的多25%,非技术人员人数比乙厂多6人。甲乙两厂共有多少人_____
A: 680B: 840C: 960D: 1020
参考答案: A 本题解释:【答案】A。解析:设甲厂技术人员有x,则乙厂有9x/8,两厂共有17x/8,即两厂总人数是17的倍数,选项中只有A、D符合。代入可知A符合题意。
25、三个圆的半径都是5厘米,三个圆两两相交于圆心。求阴影部分的面积之和。_____
A: 29.25平方厘米B: 33.25平方厘米C: 39.25平方厘米D: 35.35平方厘米
参考答案: C 本题解释:正确答案是C考点几何问题解析使用割补法可知阴影部分的面积相当于半个圆的面积,则可得25π÷2=25×3.14÷2=39.25。故正确答案为C。
26、计算:(1+12)×(1-12)×(1+13)×(1-13)×…×(1+199)×(1-199)的值为_____。
A: 1C: 50/101D: 50/99
参考答案: D 本题解释:D[解析]原式=(1+1/2)×(1+1/3)×…×(1+1/99)×(1-1/2)×(1-1/3)×…×(1-1/99)=(3/2×4/3×5/4×…×99/98×100/99)×(1/2×2/3×3/4×…×97/98×98/99)=100/2×1/99=50/99因此,本题正确答案为D。
27、甲乙丙丁四个数的和为43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,都相等,问这四个各是多少?_____
A: 14 12 8 9B: 16 12 9 6C: 11 10 8 14 D: 14 12 9 8
参考答案: D 本题解释:D。【解析】根据4个数的和为43、前三个数的关系,用带入法很容易得到答案。解:设得到的四个数为x,得(x-8)÷2+x÷3+x÷4+(x+4)÷5=43,解得:x=36,甲:(36-8)÷2=14,乙:36÷3=12,丙:36÷4=9,丁:(36+4)÷5=8.答:甲为14,乙为12,丙为9,丁为8.
28、甲从某地匀速出发,一段时间后,乙从同一地点以同样的速度同向前进,在K时刻乙距离起点30米,当乙走到甲在K时刻的位置时,甲离起点108米,问,此时乙距起点多少米?_____
A: 39B: 69C: 78D: 138
参考答案: B 本题解释:正确答案:B解析:本题属于路程问题。K时刻之后,甲、乙走过的距离相等。若K时刻后,乙走过的距离为X,则2X+30=108解得X=39。此时乙和起点的距离为:30+39=69米。本题画线段图,可直接解出。故答案为B。
29、共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有_____个。
A: 2B: 3C: 5D: 7
参考答案: A 本题解释:正确答案是A考点不定方程问题解析设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
30、李老师带领一班学生去种树,学生恰好被平分为4个小组,总共种树667棵,如果师生每人种树的棵数一样多,那么这个班共有学生多少人?_____
A: 28B: 36C: 22D: 24
参考答案: A 本题解释:参考答案:A题目详解:
。这个班师生每人种树的棵数只能是667的约数:1、23、29、667。当每人种23棵树时,全班人数应是
,而28恰好是4的倍数,符合题目要求。以此方法计算,每人种1或29或667棵树时,所得人数不能被4整除,故不符合题目要求。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
31、甲、乙两仓库各放有集装箱若干个,第一天从甲仓库移出和乙仓库集装箱总数同样多的集装箱到乙仓库,第二天从乙仓库移出和甲仓库集装箱总数同样多的集装箱到甲仓库,如此循环,则到第四天后,甲乙两仓库集装箱总数都是48个,问甲仓库原来有多少个集装箱?_____
A: 33B: 36C: 60D: 63
参考答案: D 本题解释:正确答案是D考点趣味数学问题解析逆向考虑即可,从第四天起向前逆推,甲48、乙48→甲24、乙72→甲60、乙36→甲30、乙66→甲63、乙33(此为第一天移动前),则甲仓库原来有63个集装箱。故正确答案为D。秒杀技根据题意可知甲仓库显然比乙仓库多,否则不能相互搬运,故排除A、B;代入60,第一次搬运:甲24、乙72,第二次搬运:甲48、乙48,显然不符合题意,排除C。故正确答案为D。
32、某市夏季高峰期对居民用电采用如下办法收取电费:用户月用电量在50度以内的部分,按0.4元/度收费;超过50度的部分,按0.8元/度收费。该市一户居民去年夏季高峰期有一个月的电费为32元,那么这个月该用户用电度数是_____。
A: 50度B: 55度C: 60度D: 65度
参考答案: D
33、(2002浙江)如图所示,直线SA垂直于正方形ABCD,AC与BD相交于O,AB=
cm,SC=5cm,则点S到直线BC的距离是_____。
A:
B:
C:
D:
参考答案: C 本题解释:参考答案:C题目详解:根据三垂线定理,在上图中,SA垂直于正方形ABCD,AB⊥BC,则CB⊥BC所以,题目所求的点S到直线BC的距离是SB,再根据勾股定理,可知:
。所以,选C。考查点:数量关系>数学运算>几何问题>立体几何问题>与线、角相关问题(立体)
34、某服装店三月份男装和女装的总销售额为8000元,已知三月份女装销售了50件,每件售价100元,则三月份男装销售额为_____元。
A: 1000B: 2000C: 3000D: 4000
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析由题意可得,三月份男装销售额为8000-50×100=3000元。故正确答案为C。
35、某市一条大街长7200米,从起点到终点共设有9个车站,那么每个车站之间的平均距离是_____。
A: 780米B: 800米C: 850米D: 900米
参考答案: D 本题解释:正确答案是D考点计数模型问题解析该问题为计数模型中的植树问题。车站间的平均距离为7200÷(9-1)=900。故正确答案为D。
36、某人用4 410元买了一台电脑,其价格是原来定价相继折扣了10%和2%后的价格,则电脑原来定价是_____。
A: 4 950元 B: 4 990元C: 5 000元 D: 5 010元
参考答案: C
37、汽车往返甲、乙两地之间,上行速度为30公里/时,下行速度为60公里/时,汽车往返的平均速度为_____公里/时。
A: 40B: 45C: 50D: 55
参考答案: A 本题解释:正确答案是A考点工程问题解析解析1:
解析2:可直接根据等距离平均速度模型公式得到结果。平均速度=2×30×60/(30+60)=40,故正确答案为A。注:本方法是解析1的简化,不用设未知数,直接计算得到结果,建议使用。标签等距离平均速度模型
38、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相当于甲自学一天的时间。问:甲、乙原计划每天自学多少分钟?_____
A: 42B: 48C: 56D: 64
参考答案: A 本题解释:参考答案:A题目详解:解法一:原来二者时间相同,现在甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。乙每天减少半小时后的自学时间为:
小时=12分钟,乙原计划每天自学时间为:30+12=42分钟,甲原计划每天自学时间为:12×6-30=42分钟。解法二:原来时间相同,现甲多半小时,乙少半小时,现在的两数差是(30+30)=60分钟,现在的差数差是(6-1)=5倍,这样可求出现乙每天自学的时间,加上30分钟,可得原计划每天自学时间。即:(30+30)÷(6-1)+30=12+30=42(分钟)。所以,选A。考查点:数量关系>数学运算>和差倍比问题>和差倍问题
39、甲、乙两个容器均有50厘米深,底面积之比为5:4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是_____。
A: 20厘米B: 25厘米C: 30厘米D: 35厘米
参考答案: B 本题解释:正确答案是B考点几何问题解析设注入水后的水深为y厘米,则根据注入水同样多,可知(y-9)×5=(y-5)×4,解得y=25,故正确答案为B。
40、小赵,小钱,小孙一起打羽毛球,每局两人比赛,另一人休息,三人约定每一局的输方下一局休息,结束时算了一下,小赵休息了2局,小钱共打了8局,小孙共打了5局,则参加第9局比赛的是_____。
A: 小钱和小孙B: 小赵和小钱C: 小赵和小孙D: 以上皆有可能
参考答案: B 本题解释:正确答案是B考点统筹规划问题解析本题关键在于三个人打羽毛球,一个人休息的时候必然是另外两个人比赛的时候。因此条件“小赵休息了2局”,说明小钱和小孙对战了2局,则两人其余的比赛都是和小赵进行的,于是总的比赛局数为8+5-2=11局。三人比赛中,任何一个人不可能连续休息两场,也即每个人的休息场次只能是间隔的,而11局比赛中小孙打了5局,休息了6局,那么他只能是这11局中的第2、4、6、8、10局中上场。因此第9局比赛中小孙没有上场,也即参加比赛的是小赵和小钱。故正确答案为B。
41、现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有_____。
A: 9B: 10C: 11D: 12
参考答案: B 本题解释:【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。
42、一个袋子里放着各种颜色的小球,其中红球占1/4,后来又往袋子里放了10个红球,这时红球占总数的2/3,问原来袋子里有多少个球?_____
A: 8B: 12C: 16D: 20
参考答案: A 本题解释:正确答案是A考点容斥原理问题解析解析1:设原来有小球a个,则有:(a/4+10)÷(a+10)=2/3,解得a=8秒杀技秒杀1:由于后来又往袋子里放了10个红球,这时红球占总数的2/3,所以原来小球的数目必须是三的倍数,四个答案中只有8和20,再把两个答案分别代入原来的题目中,解得满足条件的为8,所以答案选A。标签数字特性
43、某厂生产一批商标,形状为等边三角形或等腰三角形。已知这批商标边长为2cm或4cm,那么这批商标的周长可能是_____。
A: 6cm12cmB: 6cm8cm12cmC: 6cm10cm12cmD: 6cm8cm10cm12cm
参考答案: C 本题解释:正确答案是C考点几何问题解析三角形的两边之和必须大于第三边,因此三边可能有三种情况:(2,2,2)、(2,4,4)、(4,4,4),周长为分别为6cm、10cm、12cm,故正确答案为C。
44、同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?_____
A: 6B: 7C: 8D: 9
参考答案: B 本题解释:正确答案是B考点工程问题解析解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。标签差异分析
45、(2007山东,第54题)东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?_____
A: 80B: 110C: 90D: 100
参考答案: D 本题解释:参考答案
题目详解:客车上午8时出发,货车上午9时出发,到中午12时,客车和货车分别走了4小时和3小时,那么:客车速度为:
,货车的速度为:
。如果两车都从上午8时出发,到上午10时,两车都走了2小时。则上午10时两车相距为:
(千米)。所以,选D。考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线一次相遇问题
46、12个啤酒空瓶可以免费换1瓶啤酒,现有101个啤酒空瓶,最多可以免费喝到的啤酒为_____。
A: 8瓶B: 9瓶C: 10瓶D: 11瓶
参考答案: B 本题解释:B。12空瓶=1空瓶+瓶中酒,因此11空瓶=瓶中酒。101个空瓶最多喝到[101÷111=9瓶啤酒([]为取整号)。
47、某区中学生足球联赛共赛8轮(每队均需赛8场)。规则是:胜一场得3分;平一场得1分;负一场得0分。在这次联赛中,A队踢平场数是所负场的2倍,共得17分。问该队胜了几场?_____
A: 2B: 3C: 4D: 5
参考答案: D 本题解释:参考答案
题目详解:设胜了
场,负了
场:
;
;
,
;胜了5场;所以,选D。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛
48、某镇共有八块麦地,每块麦地的产量如图所示。如果单位重量的小麦单位距离运费是固定的,那么把麦场设在什么地方最省总运费?_____
A: 姚庄B: 李庄C: 张庄D: 江庄
参考答案: C 本题解释:参考答案:C题目详解:利用“核心法则”可知:本题
之间的路满足“上边总重量轻于下边总重量”,应该往
流动;
之间的路满足“左下总重量轻于右上总重量”,应该往
流动;
之间的路满足“右边总重量轻于左边总重要”,应该往
流动。因此选择
江庄,答案选择C。考查点:数量关系>数学运算>统筹问题>货物集中问题
49、1000千克青菜,早晨测得它的含水率为
,这些菜到了下午测得含水率为
,那么这些菜的重量减少了_____千克。
A: 200B: 300C: 400D: 500
参考答案: C 本题解释:参考答案:C题目详解:青菜中除了水之外的其他成分质量不会变化:用
,求出除去水的重量为30千克;用对应量去除以对应量的百分比:即为
千克;
千克;所以少了400千克;所以,选C。考查点:数量关系>数学运算>浓度问题>溶剂变化
50、某旅游景点商场销售可乐,每买3瓶可凭空瓶获赠1瓶可口可乐,某旅游团购买19瓶,结果每人都喝到了一瓶可乐,该旅游团有多少人?_____
A: 19B: 24C: 27D: 28
参考答案: D 本题解释:正确答案是D考点计数模型问题解析由题意知:3瓶=1瓶+1水,那么有2瓶=1水,那么该旅游团最多有19+|19/2|=28人。
51、48与108的最大公约数是_____。
A: 6B: 8C: 24D: 12
参考答案: D 本题解释:正确答案是D考点倍数约数问题解析解析1:直接计算,得48与108的最大公约数为12。故正确答案为D。解析2:代入法,从大到小代入验证。故正确答案为D。标签最大公约数直接代入
52、已知4/15=(1/A)+(1/B),A、B为自然数,且A≥B,那么A有几个不同的值?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:正确答案是B考点不等式分析问题解析
标签直接代入
53、_____
A: AB: BC: CD: D
参考答案: A 本题解释:正确答案是A考点几何问题解析
54、某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?_____
A: 18B: 16C: 12D: 9
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。秒杀技有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。
55、某团体有100名会员,男、女会员人数比为14∶11,会员分为三组,甲组人数与乙、丙两组人数总和一样多,甲、乙、丙各组男女会员的人数比是甲为12∶13,乙为5∶3,丙为2∶1。求丙组中有男会员多少人?_____
A: 20人B: 14人C: 12人D: 10人
参考答案: C 本题解释:C【解析】由“甲组人数与乙丙两组人数总和一样多”可知,甲组有会员100×1/2=50(人)。全体男会员有100×14/(14+11)=56人,甲组中有男会员50×1212+13=24人,乙、丙两组共有男会员56-24=32人。乙组中男会员占58,丙组中男会员占23。假若丙组中男会员也占58,则乙、丙两组共有男会员50×58=2508人,比32人少了(32-2508)人。这样就可以求出丙组中总的人数为(32-2508)÷(23-58)=18人,则丙组男会员有18×23=12人。
56、我们知道,一个正方形可以剪成4个小正方形,那么一个正方形能否剪成11个正方形,能否剪成13个正方形(大小不一定相同)?_____
A: 前者能,后者不能B: 前者不能,后者能C: 两个都能D: 两个都不能
参考答案: C 本题解释:正确答案是C考点几何问题解析
标签画图分析
57、对任意实数a、b、c定义运算
,若1*x*2=2,则x=_____。
A: 2B: -2D: ±1
参考答案: D 本题解释:参考答案
题目详解:根据题意,将a=1,b=x,c=2代入新的运算规则,得:
,得到x=±1。因此,选D考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
58、某年10月份有四个星期四,五个星期三,这年的10月8日是星期_____。
A: 一B: 二C: 三D: 四
参考答案: A 本题解释:【答案】A。解析:根据题意,10月份的31号肯定是星期三,以此推断10月10号也是星期三,那么10月8日应该是星期一。
59、一个袋子里装有三种不同颜色但大小相同的小球。红色小球上标有数字1,黄色小球上标有数字2,蓝色小球上标有数字3。小明从袋中摸出10个小球,它们的数字和是21,那么小明摸出的小球中最多可能有多少个小球是红色的?_____
A: 3个B: 4个C: 5个D: 6个
参考答案: B 本题解释:【解析】设摸出的10个球中,红色小球有a个,黄色小球b个,那么蓝色小球有(10-a-b)个。根据题干可得:a+2b+3×(10-a-b)=21。整理得b=9-2a,显然a最大为4。这时b=1,则蓝色小球有10-1-4=5(个)。故本题正确答案为B。
60、甲、乙、丙、丁四个队共同植树造林,甲队造林的亩数是另外三个队造林总亩数的1/4,乙队造林的亩数是另外三个队造林总亩数的1/3,丙队造林的亩数是另外三个队造林总亩数的一半,已知丁队共造林3900亩,问甲队共造林多少亩?_____
A: 9000B: 3600C: 6000D: 4500
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析
61、以正方形的4个顶点和中心点中的任意三点为顶点可以构成几种面积不等的三角形?_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:正确答案是B考点几何问题解析总共两类三角形:第一类是由正方形中心和相邻两个顶点构成,第二类是由正方形相邻三个顶点构成,因此可以构成2种面积不等的三角形,故正确答案为B。
62、有一1500米的环形跑道,甲乙两人同时同地出发,若同方向跑50分钟后,甲比乙多绕整一圈;若以相反方向跑2分钟后二人相遇。则乙的速度为_____。
A: 330米/分钟B: 360米/分钟C: 375米/分钟D: 390米/分钟
参考答案: B 本题解释:【答案】B。解析:同向跑时,50分钟后甲与乙第一次相遇,则甲与乙的速度差为1500÷50=30米/分钟;反向跑时,2分钟后甲乙二人第一次相遇,则甲与乙的速度和为1500÷2=750米/分钟,故乙的速度为(750-30)÷2=360米/分钟。
63、有一个上世纪80年代出生的人,如果他能活到80岁,那么有一年他的年龄的平方数正好等于那一年的年份。问此人生于哪一年_____
A: 1980年 B: 1983年 C: 1986年 D: 1989年
参考答案: A 本题解释:【解析】A。1980~2069中只有一个平方数2025(即),由“有一年他的年龄的平方数正好等于那一年的年份”可知满足条件的那一年是2025年,此时他的年龄为45岁,因此此人生于2025-45=1980(年),符合“上世纪80年代出生”这个要求。
64、有一种用六位数表示日期的方法是:从左到右的第一、第二位数表示年,第三、第四位数表示月,第五、第六位数表示日,例如890817表示1989年8月17日。如果用这种方法表示1991年的日期,那么全年中有6个数都不同的日期共有多少天?_____
A: 99B: 90C: 30D: 20
参考答案: C 本题解释:【解析】因为有91,所以1、9、10、11、12月都不能出现,实际上,2月因为0、1、2、均已出现,9102XX也是不行的,(第一个X应为0、1、2中之一)。在剩下的6个月中,每个月都有5天,共5×6=30天,例如:三月份:910324,910325,910326,910327,910328。
65、用10张同样长的纸条粘接成一条长61厘米的纸条,如果每个接头处都重叠1厘米,那么每张纸条长_____厘米。
A: 7 B: 6.9 C: 6.1 D: 7.1
参考答案: A 本题解释:A。设每张纸条长a厘米,每个接头重叠1厘米,则10张纸条共有9个接头,即9厘米,列出方程为10a-9=61,解得方程为a=7厘米,所以正确答案为A项。
66、已知
,则
的值为:_____
A: 9B: 8C:
D:
参考答案: C 本题解释:参考答案:C题目详解:原式的倒数为
;则原式=
。所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题
67、甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:正确答案是B考点行程问题解析解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。公式:两运动体从两端同时出发,相向而行,不断往返:第N次迎面相遇,两运动体路程和=全程×(2N-1);第N次追上相遇,两运动体路程差=全程×(2N-1)。标签公式应用
68、小张到文具店采购办公用品,买了红黑两种笔共66支。红笔定价为5元,黑笔的定价为9元,由于买的数量较多,商店给与优惠,红笔打八五折,黑笔打八折,最后支付的金额比核定价少18%,那么他买了红笔_____。
A: 36支B: 34支C: 32支D: 30支
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析解析1:设买红笔A支,黑笔B支,由题意得:A+B=66······(1)(5A+9B)×0.82=5A×0.85+9B×0.8······(2)由(2)式得B=5/6A,则A=66×[6/(6+5)]=36。解析2:红笔打八五折,黑笔打八折,总价打八二折,相当于红笔和黑笔都打八二折,设红笔A支,黑笔B支,则(0.85-0.82)×5A=(0.82-0.80)×9B,得B=5/6A,则A=66×[6/(6+5)]=36。故正确答案为A。
69、一道多项选择题有A、B、C、D、E五个备选项,要求从中选出2个或2个以上的选项作为唯一正确的选项。如果全凭猜测,猜对这道题的概率是_____。
A:
B:
C:
D:
参考答案: C 本题解释:参考答案:C题目详解:首先每个选项都有选或者不选这两种情况:故一共有
种;再去掉0个选项和1个选项的情况:即
种情况;而正确答案只有1种;所以猜对答案的概率为
。所以,选C。考查点:数量关系>数学运算>概率问题>单独概率
70、某代表团有756名成员,现要对A、B两议案分别进行表决,且他们只能投赞成票或反对票。已知赞成A议案的有476人,赞成B议案的有294人,对A、B两议案都反对的有169人,则赞成A议案且反对B议案的有_____。
A: 293人B: 297人C: 302人D: 306人
参考答案: A 本题解释:正确答案是A考点容斥原理问题解析解析1:反对B议案的有756-294=462人,两者都反对的共169人,则赞成A且反对B的有462-169=293人。故正确答案为A。解析2:赞成A或B议案的人有756-169=587人,赞成A议案的有476人,赞成B议案的有294人,则两者都赞成的共476+294-587=183人,则赞成A且反对B的有476-183=293人。故正确答案为A。标签两集合容斥原理公式公式应用
71、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14 B: 17 C: 28 D: 34
参考答案: D 本题解释:【答案】D。解析:240-2=238,313-7=306,此题即要求238和306的最大公约数,238=2×7×17、306=2×3×3×17,可知最大公约数是34。
72、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。
73、小王忘记了朋友手机号码的最后两位数字,只记得倒数第一是奇数,则他最多要拨号多少次才能保证拨对朋友的手机号码?_____
A: 90B: 50C: 45D: 20
参考答案: B 本题解释:正确答案是B考点排列组合问题解析先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能,因此总的组合方法有5×10=50(种),故正确答案为B。秒杀技最后两位数可能情形共有100个,其中奇数的占一半,即50个,故正确答案为B。
74、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?_____
A: 31:9B: 7:2C: 31:40D: 20:11
参考答案: A 本题解释:正确答案是A考点其他解析设两个瓶子每个容量为20,第一个瓶子中酒精和水分别为15和5;另一个瓶子中酒精和水分别为16和4,混合后酒精和水体积比为(15+16):(5+4)=31:9,故正确答案为A。
75、有甲、乙两个足够大的杯子,甲盛水,乙盛纯果汁。先将甲杯的水倒进乙杯,使乙杯内液体增加一倍,调匀;再将乙杯的果汁倒进甲杯,使甲杯内液体增加一倍,调匀;……,如果倒三次。最后甲、乙两杯果汁的浓度各是_____。
A: 25%、37.5%B: 37.5%、50%C: 25%、25%D: 37.5%、25%
参考答案: A 本题解释:A。初始状态,甲的浓度为0,乙的浓度为100%;第一次操作后,甲的浓度为0,乙的浓度为50%;第二次操作后,甲的浓度为(0+50%)÷2=25%,乙的浓度为50%;第三次操作后,甲的浓度为25%,乙的浓度为(25%十50%)÷2=37.5%。
76、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:C.【解析】300/80%=375元。故选C。
77、某台风在福建省晋江市登陆,据观测,台风中心正以20千米/时的速度向北偏东26°沿直线方向移动,该直线将穿过福州市外围,与福州市的距离为40千米。已知距离台风中心50千米的圆形范围内都会受到台风强烈影响,预计福州市受到台风强烈影响的持续时间为_____。
A: 1/2时B: 2时C: 3时D: 4时
参考答案: C 本题解释:正确答案是C考点几何问题解析
标签勾股定理
78、某停车场按以下方法收费:每4小时收5元,不足4小时按5元收取,每晚超过零时加收5元,并且每天早上8点开始重新计时,某天下午15时小王将车停入停车场,取车时缴纳停车费65元,小王停车时间t的范围是_____。
A: 如果A、B、P不在同一条直线上,汽车所在位置有3个,可位于A、B两地之间或A、B两地外侧B: 如果A、B、P不在同一条直线上,汽车的位置有无穷多个C: 如果A、B、P位于同一条直线上,汽车拉于A、B两地之间或两地外侧D: 如果A、B、P位于同一条直线上,汽车位于A、B两地外侧,且汽车到A的距离为20千米
参考答案: D 本题解释:正确答案是B考点几何问题解析AB距离为40,AP和BP距离之和为60千米,若A、B、P三点在同一直线上,则P点位于AB外侧10千米处;若A、B、P三点不在同一直线上,则转化为A、B点固定,AP+BP=60即可,有无数种选择。故答案为B。
79、有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有_____块。
A: 180B: 196C: 210D: 220
参考答案: D 本题解释:正确答案是D考点数列问题解析由瓷砖总数为400块,可知该正方形边长为20块瓷砖,每往里一层,边长减少2块瓷砖,由此可知每往里一层绿色瓷砖,边长减少4块瓷砖。因此绿色瓷砖共5层,最外层一圈为76块砖,最里一层一圈为12块砖,总数为(76+12)÷2×5=220块。故正确答案为D。注:等差数列求和公式,和=(首项+末项)×项数÷2标签公式应用
80、1+3+5+7+……+17=_____
A: 81B: 100C: 153D: 162
参考答案: A 本题解释:正确答案是A考点计算问题解析原式=(1+17)÷2×9=81,故正确答案为A。
81、爷爷年龄65岁,三个孙子的年龄是15、13、9岁,问多少年后三个孙子的年龄和与爷爷的年龄相等?_____
A: 12B: 13C: 14D: 15
参考答案: C 本题解释:【答案】C。解析:设x年后三个孙子的年龄和与爷爷的年龄相等,现在三人的年龄和与爷爷年龄相差为65-15-13-9=28,那么列式3x=x+28,解得x=14。
82、有六只水果箱,每箱里放的是同一种水果,其中只有一箱放的是香蕉,其余都是苹果和梨。已知所放水果的重量分别是1,3,12,21,17,35千克,且苹果总共的重量是梨的5倍,求香蕉有多少千克? _____
A: 3B: 21C: 17D: 35
参考答案: C 本题解释:【解析】C。解析:六箱水果的总重量为1+3+12+21+17+35=89,因为苹果是梨的5倍,所以这两种水果的重量应为6的倍数,经验证,只有香蕉为17千克时,苹果和梨的总重量为72千克可以被6整除。
83、(2008国家,第54题)某零件加工厂按照工人完成的合格零件和不合格零件数支付工资,工人每做出一个合格零件能得到工资10元,每做出一个不合格零件将扣除5元。已知,某人一天一共做了12个零件,得到工资90元,那么他在这一天作了多少个不合格零件?_____
A: 2B: 3C: 4D: 6
参考答案: A 本题解释:参考答案:A题目详解:如果12个零件全部合格,则可以得到120元工资;如果12个零件全都不合格,则可以得到-60元工资,则二者比例为:全部合格收入:12090-(-60)=150实际收入:90全不合格收入:-60120-90-30合格零件与不合格零件个数之比为5:1,因此不合格零件个数为全部零件个数的丢,即2个。考查点:数量关系>数学运算>盈亏问题
84、一个自然数,它的各个数位上的数字和为60,那么这个自然数最小是多少?_____
A: 9879899B: 7899999C: 6799999D: 6999999
参考答案: D 本题解释:参考答案
题目详解:一个自然数的值要最小:首先要求它的数位最少;其次要求其高位的数值尽量小;由于各数位上的和固定为6:要想数位最少,各位数上就要尽可能多地出现9:而
.数字进行拆分后排列得到:满足条件的最小自然数为6999999。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
85、口袋里有三种颜色的筷子各10根,请问,至少要取多少根筷子才能保证一定取到2种不同颜色的筷子各2双?_____
A: 4B: 10C: 11D: 17
参考答案: D 本题解释:参考答案
题目详解:本题应该考虑最差的情形。先取到其中一种颜色的筷子10根,可以取得其中一种颜色的筷子2双;然后再取剩余的两种颜色的筷子各3根,最后剩下的任取1根,都能取得剩下的颜色的筷子2双;因此只要取10+3×2+1=17根,就能保证一定取到2种不同颜色的筷子各2双。所以,选D。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
86、现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍。两次共放了22个球。最终甲箱中球比乙箱_____。
A: 多1个B: 少1个C: 多2个D: 少2个
参考答案: A 本题解释:正确答案是A,全站数据:本题共被作答1次,正确率为0.00%,易错项为C解析第一次放入共6个球,所以第二次共放入22-6=16个球,所以列方程得:2甲+3乙+4丙=16,此时观察可知,乙的球数必须为偶数,否则方程不平衡,所以乙中是原来的2个球的箱子。代入1,3两值可知,甲=3,丙=1。所以甲中有9个球,乙中有8个球,多1个。故正确答案为A。速解解不定方程的常用技巧--利用奇偶性求解不定方程。考点不定方程问题笔记编辑笔记
87、某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)_____
A: 25B: 30C: 35D: 40
参考答案: B 本题解释:正确答案是B考点牛吃草问题解析设河沙初始量为M,每月沉积量为N。则有:M=(80-N)×6=(60-N)×10,解得N=30,即每个月的沉积量可供30人开采;可知当开采人数为30时,才能保证连续不间断的开采,故正确答案为B。
88、如图所示,在3×3方格内填入恰当的数后,可使每行、每列以及两条对角线上的三数的和都相等。问方格内的x的值是多少?_____
A: 2B: 9C: 14D: 27
参考答案: A 本题解释:正确答案是A考点趣味数学问题解析假定中间数字为a,则a+6=8+3,则a=5。而3+a=x+6,解得x=2,故正确答案为A。
89、
:_____
A: 2B: 4C: 6D: 8
参考答案: C 本题解释:
90、2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为_____。
A: 2003B: 2004C: 2005D: 2006
参考答案: B 本题解释:正确答案是B考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。
91、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能?_____
A: 15B: 16C: 20D: 185
参考答案: B 本题解释:【答案】B。解析:一位偶数有0、2、4、6、8,共5个。考虑倒数第二位,因为相邻数字不相同且为偶数,则有4种选择。倒数第三位与倒数第二位不相同,也有4种选择,共有4×4=16种情况。
92、一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在的窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在的窗口的时间是_____。
A: 6秒钟B: 6.5秒钟C: 7秒钟D: 7.5秒钟
参考答案: D 本题解释:正确答案是D考点行程问题解析根据已知,两车的速度之和为200÷6,所以坐在快车上的旅客看到慢车驶过其所在的窗口的时间是250÷(200÷6)=7.5,故正确答案为D。
93、在10克盐与40克水的盐水中,取出40克盐水,其中盐与水各是多少克?_____
A: 8,32B: 10,30C: 8,30D: 10,32
参考答案: A 本题解释:正确答案是A考点浓度问题解析根据已知,盐和水的比例为1:4,只有A符合。因此正确答案为A。
94、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。老师点睛:45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。
95、一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,停车场有红色夏利轿车多少辆?_____
A: 14B: 21C: 15D: 22
参考答案: B 本题解释:【解析】B。红色夏利=总数-红色非夏利-非红色非夏利-非红色夏利,红色非夏利=红色-红色夏利,非红色夏利=夏利-红色夏利,设则红色夏利=50-(35-红色夏利)-8-(28-红色夏利),得红色夏利=21。
96、一个自然数,被7除余2,被8除余3,被9除余1,1000以内一共有多少个这样的自然数?_____
A: 5B: 2C: 3D: 4
参考答案: B 本题解释:参考答案:B题目详解:7、8的最小公倍数为56,根据"差同减差,公倍数做周期"可知:所有满足条件的数可表示为56n-5,也就是除以56余5;要让所有56n-5中满足被9除余1:最小数是n=3时:
;因此,满足条件的就是:
;1000以内,即0≤504n+163≤999,
;所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理
97、餐厅需要使用9升食用油,现在库房里库存有15桶5升装的,3桶2升装的,8桶1升装的。问库房有多少种发货方式,能保证正好发出餐厅需要的9升食用油:_____
A: 4B: 5C: 6D: 7
参考答案: C 本题解释:正确答案是C,解析:满足刚好发出9升油的方式有:①选1桶5升装:
;
;
共3种;②不选5升装,选2升装和1升装:
;
;
共3种。故共有
方式。故正确答案为C。考点:排列组合问题
98、某单位依据笔试成绩招录员工,应聘者中只有四分之一被录取,被录取的应聘者平均分比录取分数线高6分,没有被录取的应聘者平均分比录取分数线低10分,所有应聘者的平均分是73分,问录取分数线是多少分?_____
A: 80B: 79C: 78D: 77
参考答案: B 本题解释:【答案】B。
99、甲工人每小时可加工A零件3个或B零件6个,乙工人每小时可加工A零件2个或B零件7个。甲、乙两工人一天8小时共加工零件59个,甲、乙加工A零件分别用时为x小时、y小时,且x、y皆为整数,两名工人一天加工的零件总数相差_____。
A: 6个B: 7个C: 4个D: 5个
参考答案: B 本题解释:正确答案是B考点不定方程问题解析根据题意,甲、乙加工B零件的时间分别为8-x、8-y,则可得:3x+6(8-x)+2y+7(8-y)=59,也即3x+5y=45。由此式可知x能够被5整除,y能够被3整除,而x、y均不超过8,因此x=5,代入解得y=6。甲生产零件总数为3×5+6×3=33个,乙生产零件总数为2×6+7×2=26个,两者相差7个。故答案为B。
100、有一个长方体容器,长40厘米,宽30厘米,高10厘米,里面的水深6厘米(最大面为底面)。如果把这个容器盖紧,再竖起来(最小面为底面),里面的水深是多少厘米?_____
A: 15厘米B: 18厘米C: 24厘米D: 30厘米
参考答案: C 本题解释:正确答案是C考点几何问题解析根据题意,容器中有水40×30×6立方厘米,竖起来后底面积为30×10平方厘米,因此此时水深为(40×30×6)÷(30×10)=24厘米,故正确答案为C。