微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、一袋大白兔奶糖,5块一组分剩余2块,3块一组分剩1块,问这袋糖至少有多少块?_____
A: 26B: 34C: 37D: 43
参考答案: C 本题解释:C【解析】所要求的数必须满足除以5余2,除以3余1,通过代入法,满足条件的只有37,故答案为C。
2、地铁检修车沿地铁线路匀速前进,每6分钟有一列地铁从后面追上,每2分钟有一列地铁迎面开来。假设两个方向的发车间隔和列车速度相同,则发车间隔是_____。
A: 2分钟B: 3分钟C: 4分钟D: 5分钟
参考答案: B 本题解释:【答案】B。解析:此题为水速问题的变种,设两列地铁间的距离为1,则二者速度差为1/6,速度和为1/2,由水速问题的公式得,地铁的速度为(1/6+1/2)÷2=1/3,即3分钟发车一次。
3、某机关单位召开一次会议预期12天,后因会期缩短4天,因此原预算费用节约了一部分。其中生活费一项节约了4000 ,比原计划少用40%,生活费预算占总预算的4/9,则总预算为_____。
A: 45000元:B: 35000元C: 27500元D: 22500元
参考答案: D 本题解释:D【精析】生活费比计划少用40%,因此计划中的生活费为4000÷40%=10000元。该项费用占总预算的9/4因此总预算为10000×9/4=22500元。
4、一项工程甲、乙、丙三队合做,先由甲、乙两队合做4天后,余下的由丙队单独做8天完成,若乙队单独做15天完成,丙队单独做20天完成,求甲队单独做_____天能完成?
A: 10B: 12C: 15D: 18
参考答案: B 本题解释:B【解析】1÷[(1-1/20×8)÷4-1/15]=12(天)。
5、冷饮店规定一定数量的汽水空瓶可换原装汽水1瓶,旅游团110个旅客集中到冷饮店每人购买了1瓶汽水,他们每喝完一定数量的汽水就用空瓶去换1瓶原装汽水,这样他们一共喝了125瓶汽水,则冷饮店规定几个空瓶换1瓶原装汽水? _____
A: 8B: 9C: 10D: 11
参考答案: A 本题解释:A。110人多喝了125-110=15瓶汽水,则相当于110÷15=7……57个空瓶换一瓶汽水(不含瓶),故冷饮店规定7+1=8个空瓶换1瓶原装汽水。
6、有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整B: 11点20分C: 11点40分D: 12点整
参考答案: B 本题解释:【答案】B。解析:三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。
7、小明和小方各走一段路,小明走的路程比小方多1/5,小方用的时间比小明多1/8。小明和小方的速度之比是多少?_____
A: 37∶14B: 27∶20C: 24∶9D: 21∶4
参考答案: B 本题解释: B【解析】依题意,小明与小芳路程的比是(1+1/5):1=6:5小明与小芳时间的比是1:(1+1/8)=8:9小明与小芳速度的比是:6/8:5/9=27:20。
8、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? _____
A: 10B: 8C: 6D: 4
参考答案: B 本题解释:B。【解析】设车速V车,人速V人,自行车速3V人,则(V车-V人)×10=20×(V车-3V人),V车=5V人,即车走人4倍位移追上人故T=4×V人×10/5V人=8。
9、某盒灯泡中有3只次品和6只正品(每只均可区分),测试员每次取出一只进行测试,直到3只次品全部测出为止。假如第三只次品在第六次测试时被发现,那么不同的测试情况共有多少种?_____
A: 43200B: 7200C: 60D: 120
参考答案: B 本题解释:B。
10、小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动,一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了。原来小虎有_____个球。
A: 12B: 5C: 8D: 20
参考答案: C 本题解释:【解析】设四个人的球数在变动后的个数为χ,可得方程(χ+2)+(χ-2)十2χ+0.5χ=45,解得χ=10,则原来小虎有10-2=8个球。
11、王家村西瓜大丰收后,全村男女老少分四个组品尝西瓜,且每组人正好一样,小伙子一个人吃1个,姑娘两个人吃1个,老人三个人吃1个,小孩四个人吃1个,一共吃了200个西瓜,问王家村品尝西瓜的共有_____
A: 368人B: 384人C: 392人D: 412人
参考答案: B 本题解释: B。方法一:利用整除关系。答案必须是2,3,4的公倍挚,也就是说答案必须是12的整数倍数。只有B满足。方法二:假设每组有x人。x+x/2+x/3+x/4=200,解得x=96,96×4=384(人)。
12、一群人坐车旅游,每辆车坐22人,剩5人没有座位,每辆坐26人,空出5个座位, 问每辆车坐25人,空出多少座位? _____
A: 20B: 15C: 10D: 5
参考答案: C 本题解释: C。一盈一亏型,车的数量为(15+5)÷ (26-22)=5,则共有5×22+5=115人。则坐25人时,115 ÷ 25=4……15,即需要5辆车,空出25-15=10个座位。
13、一个金鱼缸,现已注满水。有大、中、小三个假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中。现知道每次从金鱼缸中溢出水量的情况是:第一次是第二次的1/3,第三次是第二次的2倍。问三个假山的体枳之比是多少?_____
A: 1:3:5 B: 1:4:9 C: 3:6:7 D: 6:7:8
参考答案: B 本题解释:【答案】B。解析:本题的关键是要注意第二次把中假山放入水里的时候,浴缸水不满,缺少的部分恰好是小假山的体积。已知第一次溢出的水是第二次溢出的水的1/3,即第二次溢出的水的体积是中假山和小假山的体积差,可以推导出小假山与中假山体积比为1:4,此时可直接选出正确答案为B。
14、如果某商店 以每打1.8元的价格购进6打小工艺品(每打12件).之后又以每件0.2元卖出.这些小商品全部卖完后商店可得多少利润?_____
A: 32元 B: 3.6元 C: 2.4元 D: 2.84元
参考答案: B 本题解释:B【解析】0.2×12×6-1.8×6=3.6,一打=12个。
15、黑母鸡下一个蛋歇2天,白母鸡下一个蛋歇1天,两只鸡共下10个蛋最多需要多少天?_____
A: 10 B: 11 C: 12 D: 13
参考答案: B 本题解释:【解析】B。黑鸡每3天下一个蛋,白鸡每2天下一个蛋。10天时间黑鸡10÷3=3……1最多下4个蛋。白鸡最多下10÷2=5个蛋;11天时间黑鸡11÷3=3……2最多下4个蛋,白鸡11÷2=5……1最多下6个蛋。因此一共下10个蛋至少需要11天。
16、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?_____
A: 80B: 79C: 83D: 81
参考答案: B 本题解释:【解析】从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个。故应选择B。
17、有一个整数,用它分别去除157、324和234,得到的三个余数之和是100,求这个整数。_____
A: 44B: 43C: 42D: 41
参考答案: D 本题解释:直接代入验证即可。选D。
18、某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?_____
A: 6000 B: 12000 C: 12006 D: 12012
参考答案: A 本题解释:【答案】A。解析:这是个植树问题和盈亏问题的复合问题。植树的学生有(202+348)÷(5-4)=550个,一共栽了550×4+202=2402棵树。每边栽了2402÷2=1201棵树,因此学院路长(1201-1)×5=6000米。
19、小王的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是小王的5倍,爸爸年龄在4年前是小王的4倍,则小王的爸爸今年多少岁? _____
A: 40B: 36C: 32D: 44
参考答案: B 本题解释:B。假设奶奶和爷爷一样大,妈妈和爸爸一样大,全家年龄和是200+4=204岁,这样爷爷、奶奶的年龄和是10个小王的年龄。而爸爸的年龄是4年前小王的4倍多4岁,换句话说,就是比现在小王年龄的4倍少4×4-4=12岁,妈妈也比现在小王的年龄的4倍少12岁,这样现在全家人的年龄和204+12+12=228岁,则小王的年龄为228÷(5×2+4×2+1)=12岁,爸爸的年龄为(12-4)×4+4=36岁。
20、如果一个三角形的底边长增加10%,底边上的高缩短10%,那么这个新三角形的面积是原来三角形面积的_____。
A: 90%B: 80%C: 70%D: 99%
参考答案: D 本题解释:D解析:设原三角形底边为a,高为h,面积为S,则得:S=1/2ah。那么新三角形S新=1/2a(1+10%)?h(1-10%)=1/2?ah×99%=99%S,故答案为D。
21、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元_____
A: 154B: 196C: 392D: 490
参考答案: C 本题解释:【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
22、过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四棱锥,则四棱锥与长方体的体积比为多少?_____
A: 1∶8B: 1∶6C: 1∶4D: 1∶3
参考答案: B 本题解释:【答案】B。解析:等底等高时,椎体体积是柱体的1/3。而这里椎体的高是柱体高的一半,因此该四棱锥与长方体的体积之比为1:6,故正确答案为B。
23、从1、2、3、4中任取3个数组成没有重复的三位数的偶数的取法种数为_____。
A: 10 B: 12 C: 13 D: 11
参考答案: B 本题解释:【解析】B。 题干要求组成没有重复数字的三位数的偶数,所以只有尾数是2或4两种情况。当尾数是2时,有2×3=6(种);当尾数是4时,有2×3=6(种),所以共有6+6=12(种),故本题答案为B。
24、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:C解析:6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)=6÷(4/5×3/4×2/3×1/2)=6÷1/5=30(厘米)故本题选C。
25、将一个正方形分成9个小正方形,填上1到9这9个自然数,使得任意一个横行,一个纵列以及每一对角线上的3个数之和等于15,请问位于中间的小正方形应填哪个数?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释: 【解析】B。欲保证3个数之和都等于15,只有中间的数字为平均数5才可。
26、计算19961997×19971996-19961996×19971997的值是_____。
A: 0B: 1C: 10000D: 100
参考答案: C 本题解释:C【解析】原式=(19961996+1)×19971996-19961996×(19971996+1)=19971996-19961996=10000
27、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150D: 154
参考答案: B 本题解释: 【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
28、一个两位数除以一个一位数,商仍是两位数,余数是8。问:被除数、除数、商以及余数之和是多少?_____
A: 98B: 107C: 114D: 125
参考答案: D 本题解释:【答案】D。解析:猜证结合的98÷10=9余8,10+98+9+8=125。
29、试求出下边图形中阴影部分的面积_____。
A: 3B: 2C: 1.5D: 11
参考答案: B 本题解释:【答案】B。解析:图形正中间的正方形边长为2,那么它的面积为4。阴影面积为它的一半,所以是2。
30、20×20-19×19+18×18-17×17+…+2×2-1×1的值是_____。
A: 210B: 240C: 273D: 284
参考答案: A 本题解释:原式=(20×20-19×19)+(18×18-17×17)+…+(2×2-1×1)=(20+19)(20-19)+(18+17)(18-17)+…+(2+1)(2-1)=20+19+18+17+…+2+1=(20+1)×20÷2=210故选A。
31、某家店准备打折出售一批滞销的电脑,经核算,如果按正价打九折销售,每台还可盈利305元,如果打八折,就要亏损175元。那么这种电脑的进货价是_____元。
A: 4800B: 4625C: 4015D: 3940
参考答案: C 本题解释:这种电脑打九折和打八折的差价是305+175=480(元),那么正价为480÷(90%-80%)=4800(元),进货价为4800×90%-305=4015(元)。故本题答案为C。
32、某种考试已举行了24次,共出了试题426道,每次出的题数有25题,或者16题,或者20题,那么其中考25题的有多少次?_____
A: 4B: 2C: 6D: 9
参考答案: B 本题解释:B【解析】 假设24次考试,每次16题,则共考16×24=384(道),比实际考题数少426-384=42(道),也就是每次考25题与每次考20题,共多考的题数之和为42道。而考25题每次多考25-16=9(道),考20题每次多考20-16=4(道)。这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据数的奇偶性可知,B无论是奇数还是偶数,4B总是偶数,那么9A也是偶数,因此A必定是偶数,且A不是2就是4。如果A=4,则9×4+4×B=42,B=1.5不合题意,应删去,所以考25道试题的次数是2次。
33、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14 B: 17 C: 28 D: 34
参考答案: D 本题解释:【答案】D。解析:240-2=238,313-7=306,此题即要求238和306的最大公约数,238=2×7×17、306=2×3×3×17,可知最大公约数是34。
34、A、B、C、D、E,5个小组开展扑克牌比赛,每两个小组之间都要比赛一场,到现在为止,A组已经比赛了4场,B组已经比赛了3场,C组已经比赛了2场,D组已经比赛了1场,问E组已经比赛了几场()
A: oB: 1C: 2D: 3
参考答案: C 本题解释:C【解析】A组已经比赛了4场,说明A组与B、C、D、E这4个组都进行过比赛;D组已经比赛了1场,则根据上一个条件,D组只与A组进行过比赛;B组已经比赛了3场,则根据上一个条件,B组只与A、C、E组进行过比赛;C组已经比赛了2场,则根据上面的条件,C组只能与A、B组进行过比赛;所以E组与A、B组进行过比赛。
35、三件运动衣上的号码分别是1、2、3,甲、乙、丙三人各穿一件。现有25个小球。首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取一次,其中穿1号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是_____。
A: 1 B: 2 C: 3 D: 1或者2
参考答案: B 本题解释:B。【解析】首先发出了1+2+3=6个球,第二次又取出了25-6-2=17个球,穿2号和3号球衣的人第二次取走的球都是3的倍数,穿1号球衣第二次取走的球不多于3,所以只能是2个,即是乙。甲丙二人第二次共取走17-2=15个。若甲穿3号球衣,丙穿2号球衣,两人第二次只能取走3×3+1×4=13个,若甲穿2号球衣,丙穿3号球衣,两人第二次取走1×3+3×4=15个。甲穿的是2号球衣。
36、某种型号拖拉机,前轮直径为50厘米,后轮直径为150厘米,拖拉机前进时,前轮转了240圈,求后轮转了多少圈?_____
A: 60B: 40C: 30D: 80
参考答案: D 本题解释:【解析】D。圆的周长与其直径成正比。
37、两个数的差是2345,两数相除的商是8,求这两个数之和_____。
A: 2353B: 2896C: 3015D: 3456
参考答案: C 本题解释:C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
38、1996+1997+1998+1999+2000+2001等于_____。
A: 11986B: 11991C: 12987D: 12989
参考答案: B 本题解释: B 【解析】原式=(2000-4)+(2000-3)+(2000-2)+(2000-1)+(2000+1)=2000×6-4-3-2+1=12000-9=11991。
39、100张多米诺骨牌整齐地排成一列,依顺序编号为1、2、3……99,100.第一次拿走所有奇数位置上的骨牌,第二次再从剩余骨牌中拿走所有奇数位置上的骨牌,依此类推。请问最后剩下的一张骨牌的编号是多少?_____
A: 32B: 64C: 88D: 96
参考答案: B 本题解释:B。【解析】本题关键是理解题意,第一次拿走的是所有奇数,第二次拿走的各项是2分别乘以1、3、5、7、9……,依次类推,每拿走一次后,剩下的第一个数是20、21,22、23、24……,在100之内要使2n取值最大,所以最后剩下的是64,选B。
40、今年小方父亲的年龄是小方的3倍,去年小方的父亲比小方大26岁,那么小方明年多大?_____
A: 16B: 13C: 15D: 14
参考答案: D 本题解释:D【解析】设今年小方的年龄为,则小方的※亲的年龄为3,由此可得方程:x-1=3x-1-26,解得x=13,故小方明年的年龄为13+1=14(岁)。故正确答案为D。
41、计算:(1+12)×(1-12)×(1+13)×(1-13)×…×(1+199)×(1-199)的值为_____。
A: 1C: 50/101D: 50/99
参考答案: D 本题解释:D[解析]原式=(1+1/2)×(1+1/3)×…×(1+1/99)×(1-1/2)×(1-1/3)×…×(1-1/99)=(3/2×4/3×5/4×…×99/98×100/99)×(1/2×2/3×3/4×…×97/98×98/99)=100/2×1/99=50/99因此,本题正确答案为D。
42、100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?_____
A: 43B: 44C: 45D: 46
参考答案: A 本题解释:【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
43、两辆汽车同时从A、B两站相对开出,在B侧距中点20千米处两车相遇,继续以原速前进,到达对方出发站后又立即返回,两车再在距A站160千米处第二次相遇。求A、B两站距离是A_____。
A: 440千米B: 400千米C: 380千米D: 320千米
参考答案: A 本题解释:A[解析]首先,注意到第一次相遇后到第二次相遇时行的路程是出发到第一次相遇时行的路程的2倍。设A、B两站相距x千米,则第一次相遇时,B车行了(0.5x-20)千米;第二次相遇时,B车共行了(0.5x-20)×3(千米),或一个全长又160千米。列方程,得:(0.5x-20)×3=x+160x=440因此,本题正确答案为A。
44、有下列长度的三条线段,不能组成三角形的是哪一组?_____
A: 4cm、2cm、5cmB: 12cm、14cm、8cmC: 2cm、3cm、4cmD: 6cm、2cm、3cm
参考答案: D 本题解释:D 【解析】三角形两边之和大于第三边;两边之差小于第三边。
45、如是2003除以一个两位数后,所得余数最大,则这个两位数为_____。
A: 92B: 82C: 88D: 96
参考答案: D 本题解释:D【解析】 2003÷99=20……2323+20×3=83所以商是20时,余数最大是83,此时除数是99-3=96。2003÷95=21……88+21×3=71所以商是21时,余数最大是71,此时除数是95-3=92。2003÷91=22……11+22×3=67所以商是22时,余数最大是67,此时除数是91-3=88。2003÷87=23……22+23×3=71所以商是23时,余数最大是71,此时除数是87-3=84。当除数小于84时,余数小于83。综上所述,余数最大是83,此时除数AB=96。
46、一件工作甲先做6小时,乙接着做12小时可以完成。甲先做8小时,乙接着做6小时也可以完成。如果甲先做3小时后,再由乙接着做,还需要多少小时完成? _____
A: 16B: 18C: 21D: 24
参考答案: C 本题解释:C【解析】设甲、乙两人每小时的工作量x、y,可列方程6x+12y=18x+6y=1 解得x=110y=130,甲先做了110×3,工作还剩1-310=710,故乙还需要710÷130=21 小时。故选C。
47、某个月有五个星期六,已知这五个日期的和为85,则这个月中最后一个星期六是多少号?_____
A: 10B: 17C: 24D: 31
参考答案: D 本题解释:【答案】D。解析:一个月有五个星期六,日期和为85,则平均数为17,因为五个星期六的日期构成公差为7的等差数列,平均数即是第三个星期六的日期,则第五个星期六的日期为17+7+7=31,故正确答案为D。
48、在一条公路两旁有四家工厂,工厂的职工人数如右图所示,现在要在这段路线上设立一个公共汽车站。问这个车站设在什么地方,可以使几家工厂的职工乘车方便?_____
A: 甲厂B: 乙厂C: 丙厂D: 丁厂
参考答案: C 本题解释:C【解析】四个工厂的职工人数总和的一半是:(1000+700+800+500)÷2=1500(人)。甲厂500人,丁厂1000人,它们都小于四厂总人数的一半。根据“小靠大”的原则,甲厂附近和丁厂附近都不是车站的最佳位置。甲厂与丁厂要分别向乙厂和丙厂靠,这样丙厂就相当于1000+700=1700(人),乙厂就相当于500+800=1300(人)。再由“小靠大”的原则,1700>1300,所以乙厂应向丙厂靠,即车站设在丙厂附近为最佳。故本题正确答案为C。
49、小明、小华、小强三人在超市购买学习用品,小明买了3本日记本,7支铅笔,1本单词本,共花了22元;小华买同样的4本日记本,10支铅笔,1本单词本,共花了29元,小强买同样的2本日记本,2只铅笔,2本单词本,共用多少钱?_____
A: 16B: 17C: 18D: 19
参考答案: A 本题解释:【答案】A。解析:设日记本x元,铅笔y元,单词本z元,则有3x+7y+z=22;4x+lOy+z=29。为方便计算,假设系数最大的铅笔价格为0,则有3x+z=22;4x+z=29。解得x=7,z=1。则小强花了:7×2+O×2+1×2=16元(需注意的是所求必须是x,y,z的整数倍才可以这样假设)。
50、现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的来源:91考试网 91Exam.org有_____。
A: 27人B: 25人C: 19人D: 10
参考答案: B 本题解释:【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。
51、某产品售价为67.1元,在采用新技术生产节约10%成本之后,售价不变,利润可比原来翻一番。则该产品最初的成本为_______元。_____
A: 51.2 B: 54.9 C: 61 D: 62.5
参考答案: C 本题解释:【解析】C.本题可采用方程法。设该产品最初的成本为元。由题意得:67.1-0.9x=2(67.1-x),解得x=61.因此该产品最初的成本为61元。
52、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释: 【解析】B。
分,该数值可以根据以上式子判定尾数为6,选择B。
53、某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:A【解析】该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。
54、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里碰面,下次相会将在星期几?_____
A: 星期一B: 星期五C: 星期二D: 星期四
参考答案: C 本题解释:C解析:此题乍看上去是求9,6,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,7,8的最小公倍数。既然该公倍数是7的倍数,那么肯定下次相遇也是星期二。(10,7,8的最小公倍数是5×2×7×4=280。280÷7=40,所以下次相遇肯定还是星期二。)
55、在直线上两个相距一寸的点A和B上各有一只青蛙,A点的青蛙沿直线跳往关于B点的对称点Al,而B点的青蛙跳往关于A点的对称点B1。然后A1点的青蛙跳往关于B1点的对称点A2,B1点的青蛙跳往关于A1点的对称点B2,如此下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多长距离?_____
A: 364寸B: 1088寸C: 1093寸D: 2187寸
参考答案: C 本题解释:C【解析】两只青蛙各跳一次,两只青蛙的距离为原来的3倍,所以跳7次后,两只青蛙的距离为A7B7=37×1=2187(寸)。而且A7在右,B7在左,由对称性可知B7A=BA7,所以BA7=
(寸),故本题正确答案为C。
56、一瓶挥发性药物,每天挥发5毫升,15天后挥发了全部的75%,假如每天挥发的速度不变,余下的几天能挥发完?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B【解析】5×15÷75%=100ml这瓶药物共100ml,100-5×15=25ml,剩下25ml,25÷5=5天。
57、现有篮球、排球、乒乓球、足球、网球五门选修课,每名学生必须要从中选出而且仅选择2门选修课,问至少有多少名学生进行选课,才能保证至少有6名学生所选的选修课相同?_____
A: 48B: 50C: 51D: 70
参考答案: C 本题解释:【答案】C。解析:要求五门课程选出两门,共有C25=10种,要至少有6名学生所选的选修课相同,那么这10中选课方式各有5名学生选择,共有10×5=50人,之后再来一人,就可以保证有6名学生所选的选修课相同,则为50+1=51人,所以答案为C。
58、有一个项目,由小刘单独做需要3天完成,由小李单独做需要15天完成,而小刘、小李、小王三个人合作需要1.5天完成。问小李和小王两个人合作完成这个项目需要多少天?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:B.【解析】这是一道工程问题。设总工作量为15,那么小刘的工作效率为5,小李的工作效率为1,三人的工作效率为10,那么小王的工作效率为4,也就是小李和小王的效率为5,两人合作需要3天完成。因此,本题的答案为B选项。
59、有一些水管,它们每分钟注水量都相等。现在打开其中若干根水管,经过预定时间的1/3,再把打开的水管增加1倍,就能按预定时间注满水池。如果开始打开10根水管,中途不增加水管,也能按预定时间注满水池。则最开始打开’了_____根水管。
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:【解析】增开水管后,有原来2倍的水管,注水时间是预定时间的1-1/3=2/3,2/3是1/3的2倍,因此增开水管后的这段时间的注水量,是前一段时间注水量的4倍。设水池容量是1,预定时间的1/3(前一段时间)的注水量是1—4/(1+4)=1/5,10根水管同时打开能按预定时间注满水池,每根水管的注水量是1/10,预定时间的1/3每根水管的注水量是1/10×1/3=1/30,1/5÷1/30=6根。
60、某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?_____
A: 1104 B: 1150 C: 1170 D: 1280
参考答案: B 本题解释:B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。
61、科学家进行一项实验,每隔五小时做一次记录。已知做第十二次记录时,挂钟的时针恰好指向9,那么第一次记录时,时针指向_____。 B: 1C: 2D: 3
参考答案: C 本题解释:【答案】C。解析:做第十二次记录时,离第一次记录共有55小时,即时针转4圈又7小时后时针指向9,那么开始时时针指向2,因此,本题答案为C。
62、3×999+8×99+4×9+8+7的值是:_____
A: 3840B: 3855C: 3866D: 3877
参考答案: A 本题解释: 【答案】A。解析:四个选项尾数各不相同,可考虑结果的尾数。7+2+6+8+7=30,所以尾数为0,故选A。
63、王方将5万元存人银行,银行利息为1.5%/年,请问2年后,这5万元的利息是多少?_____
A: 1500元B: 1510元C: 1511元D: 1521元
参考答案: C 本题解释:C【解析】本题是求利息收入,而本息=本金×(1+利率)N。根据以上公式可得50000×(1+1.5%)2=51511.25(元),利息:51511.25一500001511(元)。故本题正确答案为C。
64、一单位组织员工乘坐旅游车去泰山,要求每辆车上的员工人数相等。起初,每辆车上乘坐22人,结果有1人无法上车;如果开走一辆空车,那么所有的游客正好能平均乘到其余各辆旅游车上,已知每辆车上最多能乘坐32人。请问该单位共有多少员工去了泰山?_____
A: 269B: 352C: 478D: 529
参考答案: D 本题解释:D。开走一辆空车,则剩余22+1=23人,需要把23人平均分配到剩余的旅游车上。23的约数只有23和1,而每辆车最多能乘坐32人,排除将23人分配到1辆车上的情况(22+23>32),只能每辆车上分配1人,分配后每辆车有22+1=23人。进行条件转换,如果没有开走那辆车,那么每辆车分配23人,还少23人,加上已有条件“每辆车上乘坐22人,结果有1人无法上车”,就转化成了常规的盈亏问题。有车(1+23)÷(23-22)=24辆。有员工24×22+1=529人。
65、李明从图书馆借来一批图书,他先给了甲5本和剩下的
,然后给了乙4本和剩下
,最后自己还剩2本。李明共借了多少本书?_____
A: 30B: 40C: 50D: 60
参考答案: A 本题解释: 【解析】A。解法一、设李明共借书x本,则
,解得x=30;解法二、思维较快的直接倒推用反计算,
。
66、甲乙两人参加射击比赛,规定每中一发记5分,脱靶一发倒扣3分,两人各打了10分子弹后,分数之和为52,甲比乙多得了16分,问甲中了多少发?_____
A: 9B: 8C: 7D: 6
参考答案: B 本题解释:【答案】B。解析:甲、乙分数之和为52,差为16,则甲为(52+16)÷2=34分,根据鸡兔同笼公式可得,甲中了(34+3×10)÷(5+3)=8发。
67、小强前三次的数学测验平均分是88分,要想平均分达到90分以上,他第四次测验至少要得多少分?_____
A: 98分B: 92分C: 93分D: 96分
参考答案: D 本题解释:【答案】D。解析:如果第四次测验后平均分数达到90分,则总分为90×4=360(分),第四次测验至少要360-88×3=96(分)。故正确答案为D。
68、从甲地到乙地先有一段上坡路,从甲地到乙地的上坡路长度是下坡路长度的2倍,而上坡的速度是下坡的1/3,如果从甲地到乙地时间为56分钟,若保持上下坡的速度不变,那么从乙地到甲地时间为_____分钟。
A: 40 B: 50 C: 60 D: 42
参考答案: A 本题解释:A【解析】依照题意,设甲地到乙地下坡路的长度为x,上坡路的长度为2x,上坡的速度为y,下坡的速度为3y。根据时间=路程÷速度,可列出方程,化简得到=8。求从乙地到甲地的时间,上下坡的长度正好相反,列出方程=5×8=40分钟。
69、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
70、由1、2、3组成的没有重复数字的所有三位数之和为多少?_____
A: 1222 B: 1232 C: 1322 D: 1332
参考答案: D 本题解释:D。因为1、2、3之和可被3整除,故而1、2、3所组成的没有重复数字的三位数都能被3整除,而这些数字相加之和也必能被3整除,只有D项能被3整除,为正确答案。根据排列组合原理,可知该没有重复数字的三位数共有6个,1、2、3三个数在个、十、百位上各出现两次,即(1+2+3)×2=12,也就是说这一数字当为12+120+1200=1332。
71、小陈、小张、小赵和小周四个人的平均基本工资为1010元,这次工资调整,他们基本工资分别上调了254元、191元、146元和209元,现在四个人的平均基本工资是_____
A: 1180元B: 1210元C: 1080元D: 1220元
参考答案: B 本题解释: 【解析】B。现在平均基础工资为1010+(254+191+146+209)÷4=1210元。
72、比-5大-7的数是_____。
A: -3B: 2C: -12D: -7
参考答案: C 本题解释: C [解析] -5+(-7)=-12。故本题选C。
73、一个质数的3倍与另一个质数的2倍之和等于20,那么这两个质数的和是_____。
A: 8 B: 9 C: 7 D: 6
参考答案: B 本题解释:【解析】B。 设这两个质数分别为x、y,则3x+2y=20。2y和20都是偶数,则3x也是偶数,即x为偶数。又因为x同时是质数,则x=2,y=7。两质数之和x+y=9。故选B。
74、如果a、b均为质数,且3a+7b=41,则a+b=_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释: 【答案】C。解析:a=2,b=5符合题意,选C。
75、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.
76、甲、乙有数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个,如甲、乙二人一起按2元5个卖全部的萝卜,总收入会比预想的1个人少4元,两人共有多少萝卜?_____
A: 420B: 120C: 360D: 240
参考答案: D 本题解释:D。
77、有面积为1平方米、4平方米、9平方米、16平方米的正方形地毯各10块,现有面积为25平方米的正方形房间需用以上地毯来铺设,要求地毯互不重叠且而好铺满。问最少需几块地毯? _____
A: 6块B: 8块C: 10块D: 12块
参考答案: B 本题解释:最少需地毯块数,即尽量用大面积的地毯,25=16+9×1 ——10块25=9+3×4+4×1——8块25=4×4+9×1 ——13块,所以最小块数为8.具体是一块9平方米,三块4平方米。四块1平方米,选B。
78、甲、乙两港相距720千米,轮船往返两港需要35小时,逆流航行比顺流航行多花5个小时;帆船在静水中每小时行驶24千米,问帆船往返两港需要多少小时?_____
A: 58B: 60C: 64D: 66
参考答案: C 本题解释:C。分析可知轮船逆流航行了20小时,顺流航行了15小时。可得水流速度是(720÷15—720÷20)÷2=6千米/小时,所以帆船顺水速度是24+6=30千米/小时,逆水速度是24—6=18千米/小时,往返需要720÷30+720÷18=64小时。
79、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:答案:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。
80、对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有_____。
A: 22人 B: 28人C: 30人D: 36人
参考答案: A 本题解释:【解析】A。解答此题的关键在于弄清楚题中的数字是怎样统计出来的。一个人喜欢三种中的一种,则只被统计一次;一个人如喜欢两种,则被统计两次,即被重复统计一次;一个人如喜欢三种,则被统计三次,即喜欢看球赛、电影和戏剧的人数中都包括他,所以他被重复统计了两次。总人数为100,而喜欢看球赛、电影和戏剧的总人次数为:58+38+52=148,所以共有48人次被重复统计。这包括4种情况:(1)12个人三种都喜欢,则共占了36人次,其中24人次是被重复统计的;(2)仅喜欢看球赛和戏剧的,题中交待既喜欢看球赛又喜欢看戏剧的共有18人,这个数字包括三种都喜欢的12人在内,所以仅喜欢看球赛和戏剧的有6人,则此6人被统计了两次,即此处有6人次被重复统计;(3)仅喜欢看电影和戏剧的,题中交待既喜欢看电影又喜欢看戏剧的有16人,这个数字也应包括三种都喜欢的12人在内,所以仅喜欢看电影和戏剧只有4人,即此处有4人被重复统计。(4)仅喜欢看球赛和电影的,此类人数题中没有交待,但我们可通过分析计算出来。一共有48人次被重复统计,其中三种都喜欢的被重复统计了24人次,仅喜欢看球赛和戏剧的被重复统计了6人次,仅喜欢看电影和戏剧的被重复统计了4人次,则仅喜欢看球赛和电影的被重复统计的人次数为:48-24-6-4=14,这也就是仅喜欢球赛和电影的人数。一共有52人喜欢看电影,其中12人三种都喜欢,4人仅喜欢看电影和戏剧两种,14人仅喜欢看球赛和电影两种,则只喜欢看电影的人数为:52-12-4-14=22。
81、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 15 B: 14 C: 13 D: 12
参考答案: D 本题解释:D。【解析】如果把4个数全加起来是什么?实际上是每个数都加了3遍。 (45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,用64减去52(某三个数和最大的)就是最小的数,等于12。
82、把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8=11。若对某些自然数n满足n-Sn=2007,则n最大值是_____。
A: 2010B: 2016C: 2019D: 2117
参考答案: C 本题解释:C【解析】当n-Sn=2007时,n为20ab的形式,依题意有20ab-(2+a+b)=2007,可得2000+10a+b-2-a-b=2007,得出a=1。当b取最大值9时,n有最大为2019。故选C。
83、甲、乙、丙三人打羽毛球,每一局由两人上场,另一人做裁判。第一句抽签决定裁判,往后每一局的比赛在上一局的胜者和上一局的裁判之间进行。打了若干场之后,甲胜了10局,则乙和丙各负了8局,则他们至少打了_____局
A: 20B: 21C: 22D: 23
参考答案: C 本题解释:【答案】C。解析:根据题目,乙负了8局,说明乙做裁判至少8局,因此甲和丙打了8局,同理,丙负了8局,丙做裁判至少8局,说明甲和乙打了8局,因此甲,共打了8+8=16局,而甲胜了10局,说明甲输了6局,因此说明乙和丙打了6局,因此三人至少共打8+8+6=22局
84、甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。摩托车开始速度是50千米/小时,中途减速为40千米/小时。汽车速度是80千米/小时。汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时是在他出发后的多少小时?_____
A: 1B: 1(1/2)C: 1/3D: 2
参考答案: C 本题解释: C 解析: 汽车行驶100千米需100÷80=1(1/4)(小时),所以摩托车行驶了1(1/4)+1+1/6=2(5/12)(小时)。如果摩托车一直以40千米/小时的速度行驶,2(5/12)小时可行驶9623千米,与100千米相差10/3千米。所以一开始用50千米/小时的速度行驶了10/3÷(50-40)=1/3(小时)。故本题选C。
85、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: 1400C: 1120D: 1050
参考答案: D 本题解释:【答案】D。解析:主唱分25%,其余5人分75%,所以每人分15%,所以7000×l5%=1050元。
86、某人做两位数乘两位数乘法时,把一个乘数的个位数5误写成3,得出的乘积是552,另一个学生却把5误写成8,得出的乘积是672,则正确的乘积是_____。
A: 585B: 590C: 595D: 600
参考答案: D 本题解释:【解析】(672-552)÷(8-3)=24,即另一个乘数是24;552÷24=23,故正确的乘数是25,则正确的乘积就是24×25=600。故选D。
87、一个人到书店购买了一本书和一本杂志,在付钱时,他把书的定价中的个位上的数字和十位上的看反了,准备付21元取货。售货员说∶“您应该付39元才对。”请问书比杂志贵多少钱?_____
A: 20B: 21C: 23 0D: 24
参考答案: C 本题解释:【答案】C。解析:数字看反前后,书价相差18,说明十位和个位数字相差为2,总价为39,故书价只能是31,则杂志的价格是8.相差23。
88、将一块三角形绿地沿一条直线分成两个区域,一块为三角形,一块为梯形,已知分出的三角形区域的面积为1.2亩,梯形区域的上、下底边分别为80米、240米,问分出的梯形区域的面积为多少亩?_____
A: 9.6B: 11.2C: 10.8D: 12.0
参考答案: A 本题解释:本题答案选A。解析:分出的三角形面积为1.2亩=800平方米,底边为梯形的上底边80米可知三角形的高为800×2÷80=20米,整块三角形绿地的底边为240米,由比例关系可得,高为20÷(80÷240)=60米,则绿地面积为240×60÷2=7200平方米=10.8亩,故梯形面积为10.8-1.2=9.6亩。
89、一队战士排成三层空心方阵多出9人,如果在空心部分再增加一层,又差7人,问这队战士共有多少人?_____
A: 121B: 81C: 96D: 105
参考答案: D 本题解释:D[解一]由题意可得空心方阵再往里一层的总人数是:9+7=16(人),每边人数为:16÷4+1=5(人);所以3层空心方阵最外层每边人数为:5+2×3=11(人),总人数为:(11-3)×3×4=96(人);这队战士的总人数是:96+9=105(人)。[解二]相邻两层的人数之差为8人,最里层的人数为9+7+8=24人,次里层为24+8=32人,最外层为32+8=40人,所以总人数为24+32+40+9=105人。
90、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。
91、在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是_____。
A: 1644B: 1779C: 3406D: 3541
参考答案: D 本题解释:【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。
92、一堆沙重480吨,用5辆载重相同的汽车运3次,完成了运输任务的25%,余下的沙由9辆同样的汽车来运,几次可以运完?_____
A: 4次B: 5次C: 6次D: 7次
参考答案: B 本题解释:【答案】B。解析:因为用5辆载重相同的汽车运3次,完成了运输任务的25%,所以每辆车一次可以运总工程量的(25÷5÷3)%=(5/3)%,所以9辆车一次可以运总工程量的9×(5/3)%=15%,余下的75%用9辆车运的话需要75÷15=5次,故正确答案为B。
93、一篇文章,现有甲乙丙三人,如果由甲乙两人合作翻译,需要10小时完成,如果由乙丙两人合作翻译,需要12小时完成,现在先由甲丙两人合作翻译4小时,剩下的再由乙单 独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,需要_____小时能够完成。
A: 15B: 18C: 20D: 25
参考答案: A 本题解释:正确答案是 A。考点:工程问题解析:设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。
94、某工厂有一大型储水罐供全厂生产用水,已知每天晚8点至早8点蓄水,蓄水管流量为8吨/小时,工厂用水为每天早8点至晚12点,用量为6吨/时,储水罐中水位最高时的储水量至少是_____。
A: 48吨B: 72吨C: 84吨D: 96吨
参考答案: B 本题解释:B【解析】从每晚8点开始蓄水,至早8点水位一直在升高,在这之后,蓄水停止,水位下降;晚8点至晚12点之间,水位上升,但同时仍在用水。故水位最高点应为早8点。8×(12一4)+4×(8一6)=72(吨)。
95、20+19-18-17+16+15-14-13+12+11···+4+3-2-1=_____。
A: 10B: 15C: 19D: 20
参考答案: D 本题解释:【答案】D。解析:解析1:原式=(20-18)+(19-17)+(16-14)+(15-13)+···+(4-2)+(3-1)=2+2+2+2+···+2+2=2×10=20。故正确答案为D。解析2:原式=20+(19-18-17+16)+(15-14-13+12)+…+(3-2-1)=20。故正确答案为D。
96、从12时到13时,钟的时针与分针可成直角的机会有多少次?_____
A: 1 B: 2 C: 3 D: 4
参考答案: B 本题解释:B【解析】时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。
97、一个三位自然数。把它十位上的数字去掉后变成的两位数是原来三位数的七分之一。问这样的三位数有几个?_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B。
98、从某车站以加速度为1/18米/秒2始发的甲列车出发后9分钟,恰好有一列与甲列车同方向,并以50米/秒作匀速运行的乙车通过该车站,则乙车运行多少分钟与甲车距离为最近?_____
A: 9B: 3C: 5D: 6
参考答案: D 本题解释:D。当甲车速度小于乙车时,乙车逐渐缩短与甲车的距离;当甲车速度大于乙车时,两车之间距离拉大;仅当两车速度相同时,两车距离最小。根据Vt=Vo+at,可得50=1/18×9×60+1/18×t,求得t=360秒=6分钟。
99、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?_____
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
100、一段路程分为上坡、平路、下坡三段,路程长之比依次是1∶2∶3。小龙走各段路程所用时间之比依次是4∶5∶6。已知他上坡时速度为每小时3千米,路程全长是50千米,小龙走完全程用多少小时?_____
A: 10(5/12)B: 12C: 14(1/12)D: 10
参考答案: A 本题解释:A解析:上坡、平路、下坡的速度之比是:14∶25∶36=5∶8∶10平路速度为:3×8/5=24/5(千米/小时)下坡速度为:3×10/5=6(千米/小时)上坡路程为:50×1/(1+2+3)=50/6=25/3(千米)平路路程为:50×2/(1+2+3)=50/3(千米)下坡路程为:50×3/(1+2+3)=25(千米)25/3÷3+50/3÷24/5+25÷6=10(5/12)(小时)故本题选A。