微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、对一批编号为1—100,全部开关朝上(开)的灯进行一下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关;一直到100的倍数。则最后状态为关的灯有几个?_____
A: 10B: 15C: 20D: 大于20
参考答案: A 本题解释:参考答案:A题目详解:最后处于关闭状态的灯,其开关被拨动的次数为奇数,因此该题转化为:求1—100中有多少个数其约数个数为奇数。根据约数的定义:如果b为a的约数,则有a=bc(c为整数),故除了b=c,即a为完全平方数这种情况之外,a的约数个数一定都是偶数。由于
,即1—100中,共有10个完全平方数。因此,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数
2、某单位的员工不足50人,在参加全市组织的业务知识考试中全单位有1/7的人得90~100分,有1/2的人得80~89分,有1/3的人得60~79分,请问这个单位得60分(不包含60分)以下考试成绩的有多少人?_____
A: 1B: 2C: 3D: 4
参考答案: A 本题解释:参考答案:A题目详解:根据题意,该单位的人数必能被7,2,3整除,且不足50人;因此该单位的人数为:42人;得60分以下的人数:
。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数
3、园林工人要在周长300米的圆形花坛边等距离地栽上树,他们先沿着花坛的边每隔3米挖一个坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一棵树。这样,他们还要挖多少个坑才能完成任务?_____。
A: 60B: 54C: 50D: 56
参考答案: B 本题解释:参考答案:B题目详解:根据题意,每隔3米已挖30个坑,所以实际挖了:3×30=90米;在90米内3、5的最小公倍数即15,则90米内求3、5的公倍数有:15、30、45、75、90,这五个数即为重复的坑;300米每隔5米栽一棵要所需要的坑的数量为:
个坑;那么,还需再挖的坑的数量为:59-5=54个。所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
4、有一种长方形小纸板,长为19毫米,宽为11毫米。现在用同样大小的这种小纸板拼合成一个正方形,问最少要几块这样的小纸板拼合成一个正方形,问最少要几块这样的小纸板?_____
A: 157块B: 172块C: 209块D: 以上都不对
参考答案: C 本题解释:参考答案:C题目详解:本题可转化为:求19与11的最小公倍数,即为:19×11=209;则组成正方形的边长为209,从而可得组成正方形的小纸板数为:
;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
5、6.有两个两位数,这两个两位数的最大公约数与最小公倍数的和是91,最小公倍数是最大公约数的12倍,求这较大的数是多少?_____
A: 42B: 38C: 36D: 28
参考答案: D 本题解释:参考答案
题目详解:此题可以根据定义来解答。这两个数的最大公约数是:
;最小公倍数是:
;则这两位数应为:21和28。所以,选D考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
6、先将线段AB分成20等分,线段上的等分点用“△”标注,再将该线段分成21等分,等分点用“O”标注(AB两点都不标注),现在发现“△”和“O”之间的最短处为2厘米,问线段AB的长度为多少?_____
A: 2460厘米B: 1050厘米C: 840厘米D: 680厘米
参考答案: C 本题解释:参考答案:C题目详解:解法一:前后两次段数的最小公倍数是:20×21=420,再由“△”和“O”之间的最短长度只可能发生在线段AB的两端,且“△”和“O”之间的最短处为2厘米,则:AB=20×21×2=840cm。所以,选C。解法二:两种不同标号间的最短距离为:
cm;解得
。所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
7、如图所示,街道ABC在B处拐弯,在街道一侧等距装路灯,要求A、B、C处各装一盏路灯,这条街道最少装多少盏路灯?_____
A: 18B: 19C: 20D: 21
参考答案: C 本题解释:参考答案:C题目详解:根据题意,灯距应取715和520的最大公约数,即65米;则最少装路灯的数量为:(715+520)÷65+1=20盏。所以,选C考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
8、用正方形纸板铺满24×36cm的长方形,最少需要多少块正方形纸板?_____
A: 6B: 12C: 24D: 54
参考答案: A 本题解释:参考答案:A题目详解:本题可转化为求:24、36的最大公约数;24、36的最大公约数为12,故用边长为12cm的正方形纸板来铺,需要的纸板最少;需要正方形纸板为:(24×36)÷(12×12)=6块。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
9、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14B: 17C: 28D: 34
参考答案: D 本题解释:参考答案
题目详解:根据题意,由于苹果分到最后余2,桔子分到最后余7,那么:
,
两个数会被整除。此题可转化为:求238和306的最大公约数,因为:
,
,可知238和306的最大公约数是34。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
10、甲、乙、丙三人沿着200米的环形跑道跑步,甲跑完一圈要1分30秒,乙跑完一圈要1分20秒,丙跑完一圈要1分12秒,三人同时、同向、同地起跑,最少经过多少时间又在同一起跑线上相遇?_____
A: 10分B: 6分C: 24分D: 12分
参考答案: D 本题解释:参考答案
题目详解:三人跑完一圈的时间比为:
;三人跑完一圈的速度比为:
;化为最简整数比为:8:9:10,即三人分别跑了8、9、10圈后又在同一起跑线上相遇,时间为:
分钟。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数
11、(2009-北京社会)甲、乙、丙三个滑冰运动员在一起练习滑冰,已知甲滑一圈的时间,乙、丙分别可以滑一又四分之一圈和一又六分之一圈,若甲、乙、丙同时从起点出发,则甲滑多少圈后三人再次在起点相遇?_____
A: 8B: 10C: 12D: 14
参考答案: C 本题解释:参考答案:C题目详解:根据题意,“三人再次在起点相遇”,则三人滑的圈数必须都为整数;相同时间内,甲、乙、丙滑的圈数之比为:
,将其转化为整数比;将他们同时乘以4,6的最小公倍数12,即为12:15:14;则三人分别滑12、15、14圈时再次在起点相遇;因此,选C。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数
12、甲、乙两人各写一个三位数,发现这两个三位数有两个数字是相同的,并且它们的最大公约数是75,那么这两个三位数的和的最大值是多少?_____
A: 1725B: 1690C: 1545D: 1340
参考答案: A 本题解释:参考答案:A题目详解:由题意可知:75的倍数的最大三位数是:13×75=975;有两个数字相同的另一个75的倍数最大的是:10×75=750;所以,这两个三位数的和的最大值是:975+750=1725。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
13、男女并排散步,女的3步才能跟上男的2步。两人从都用右脚起步开始到两人都用左脚踏出为止,女的应走出多少步?_____
A: 6步B: 8步C: 12步D: 多少步都不可能
参考答案: A 本题解释:参考答案:A题目详解:根据题意,即求2,3的最小公倍数;因为并排:那么男人走两步与女人走三步同速;首先男人前两步为:右脚--左脚,女人前三步为:右脚--左脚--右脚;等到男人后两步为:右脚--左脚,女人后三步为:左脚---右脚---左脚,此时与男人同时迈左脚出;女人一共走了6步。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
14、在1到200的全部自然数中,既不是5的倍数,也不是8的倍数的数有多少个?_____
A: 25B: 40C: 60D: 140
参考答案: D 本题解释:参考答案
题目详解:由题意得,5和8的最小公倍数是40。从1到200中,5的倍数有:200÷5=40个,8的倍数有:200÷8=25个,5和8的公倍数有:200÷40=5个,至少是5或者8的倍数的有:40+25-5=60个。所以,既不是5的倍数,也不是8的倍数的数有:200-60=140个。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
15、(2008.辽宁)张警官一年内参与破获的各类案件有100多件,是王警官的5倍,李警官的五分之三,赵警官的八分之七,问李警官一年内参与破获多少案件?_____
A: 175B: 105C: 120D: 不好估算
参考答案: A 本题解释:参考答案:A题目详解:设张警官破获的案件为x件,则:根据“是王警官的5倍,李警官的五分之三,赵警官的八分之七”可知,张警官破获了5×3×7×N件,又因100故张警官破获的案件只能为105;则李警官一年内参与破获了案件:105÷3/5=175件。因此,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数